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Abstract. This paper is devoted to simultaneous determination
of the strain hardening exponent, the shear modulus and the yield
stress in an inverse problem. The inverse problem consists of de-
termining the unknown coefficient f = f(T 2), T 2 := |∇u|2 in the

nonlinear equation ut − ∇.
(
f(T 2)∇u

)
= 2t, (x, y, t) ∈ ΩT :=

Ω× (0, T ), Ω ⊂ R2, by measured output data (or additional data)
given in the integral form. After we solve direct problem using a
semi-implicit finite difference scheme, a numerical method based
on discretization of the minimization problem, steepest descent
method and least squares method is proposed for the solution of
the inverse problem. We use Tikhonov regularization to overcome
the ill-posedness of the inverse problem. Numerical examples with
noise free and noisy data illustrate applicability and accuracy of
the proposed method to some extent.

Nomenclature

g: Modulus of plasticity
G: Modulus of rigidity (shear
modulus)
E: Young’s modulus
ν: Poisson coefficient
F: Class of admissible coefficients
Ω: Cross section of a bar
∂Ω: Boundary of Ω
ϕ: Angle of twist per unit length
T 2 := |∇u|2: Stress intensity
u(x, y): Prandtl stress function
T0

2 := max
x∈Ω
|∇u|2: Yield stress

M : Theoretical value of the torque
M: Measured value of the torque
T : Final time
< ., . >: Inner product
‖.‖∞: Maximum norm
‖.‖2: L2 norm in Ω
L2(Ω): Set of square integrable
functions on Ω
J(f): Cost functional
τ : Time step
wh: Uniform mesh
h1: Mesh step in x direction
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h2: Mesh step in y direction
N1: Number of mesh points in x
direction
N2: Number of mesh points in y
direction
N : Number of measurements
u: Exact solution
uh: Approximate solution
u0: Initial approximation
εuh: Absolute error
O(.): Landau’s symbol

δuh: Relative error
κ: Strain hardening exponent
T: Transpose of a matrix
∇: Gradient
λ: Regularization parameter
ε: Stopping criterion
q: Number of points in t direction
h: Differential step for κ
k: Differential step for G
m: Differential step for T0

2

1. Introduction

According to the deformation theory of plasticity, stress-strain rela-
tion between deviators is described by the Hencky correlation

σDij = 2g(Γ2)εDij , i, j = 1, 2, 3.

Then the following relation holds between the intensities of shift strain

Γ :=
(
2εDijε

D
ij

) 1
2 and tangential stress T :=

(
1

2
σDijσ

D
ij

) 1
2

T = g
(
Γ2
)

Γ,(1.1)

where the function g
(
Γ2
)

describes the elastoplastic properties of the
material and is sometimes called the modulus of plasticity. Equation
(1.1) can be formally regarded as a general condition encompassing

different phases strain. Thus, putting g
(
Γ2
)

=
τs
Γ

, we obtain the Von

Mises’s criterion T = τs; while putting g
(
Γ2
)

= G, we obtain the case
of Hooke’s elastic medium, where T = GΓ and G = E/(2(1 + ν)) is
the modulus of rigidity (shear modulus), E > 0 is the Young’s mod-

ulus, ν ∈
(

0,
1

2

)
is the Poisson coefficient. The shear modulus is

defined as the ratio of shear stress to the shear strain. It describes
an object’s tendency to shear when acted upon by opposing forces.
Also it is used to determine how elastic or bendable materials evolve
if they are sheared, which is being pushed parallel from opposite sides.
The Poisson coefficient for some materials such as aluminum, bronze,
copper, ice, magnesium, molybdenum, monel metal, nickel silver are
0.334, 0.34, 0355, 0.33, 0.35, 0.307, 0.315, 0.322 respectively. Since the
Poisson coefficient of the aforementioned materials are around 0.3, it
is assumed to be 0.3 throughout this paper. We note that changing
of this value affect numerical results but doesnt affect the applicability
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and efficiency of the method given in Section 3.

According to the deformation theory of plasticity, the function g
(
Γ2
)

satisfies the following conditions [12]:
c1 ≤ g(Γ2) ≤ c2,
g(Γ2) + 2g′(Γ2)Γ2 ≥ c3 > 0, ∀Γ2 ∈

[
Γ∗

2,Γ∗2
]
,

g′(Γ2) ≤ 0,
∃Γ0

2 ∈ (Γ∗
2,Γ∗2) : g(Γ2) = G, ∀Γ2 ∈

[
Γ0

2,Γ∗2
]
,

(1.2)

where ci > 0, i = 1, 2, 3 are constants. Thus g(Γ2) is a decreasing
function of Γ2 with c1 ≤ g(Γ2) ≤ c2, there exists an inverse function
Γ = f(T 2)T such that g(Γ2)f(T 2) = 1 and f(T 2) satisfies the following
conditions [12]:

c4 ≤ f(T 2) ≤ c5,
c4 ≤ f(T 2) + 2f ′(T 2)T 2 ≤ c6, ∀T 2 ∈

[
T∗

2, T ∗2
]
,

f ′(T 2) ≥ 0,

∃T0
2 ∈ (T∗

2, T ∗2) : f(T 2) =
1

G
, ∀T 2 ∈

[
T0

2, T ∗2
]
,

(1.3)

where c4 =
1

c2

, c5 =
1

c1

and c6 =
1

c3

. A set F satisfying the conditions

(1.3) is called the class of admissible coefficients in optimal control and
inverse problems theory.

The quasistatic mathematical model of the elastoplastic torsion of
a strain hardening bar is given in [11]. In this model, one seeks the
solution u(x, y), (x, y) ∈ Ω ⊂ R2, of the following nonlinear boundary
value problem:{

−∇.
(
f(T 2)∇u

)
= 2ϕ, (x, y) ∈ Ω ⊂ R2,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(1.4)

where Ω := (0, a)× (0, b), a, b > 0 is the cross section of a bar, ϕ is the
angle of twist per unit length, T 2 := |∇u|2 is the stress intensity and
u(x, y) is the Prandtl stress function. Now we define the parameters
in (1.3). First, we define T0

2 := max
x∈Ω
|∇u|2. In materials science, it

corresponds to the yield stress which is the maximum stress or force
per unit area within a material that can arise before the onset of per-
manent deformation. When stresses up to the yield stress are removed,
the material resumes its original size and shape. In other words, there
is a temporary shape change that is self-reversing after the force is
removed, so that the object returns to its original shape. This kind
of deformation is called pure elastic deformation. On the other hand,
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irreversible deformations are permanent even after stresses have been
removed. One type of irreversible deformation is pure plastic deforma-
tion. For such materials the yield stress marks the end of the elastic
behavior and the beginning of the plastic behavior. For any angle
ϕ > 0, all points of the bar have non-zero stress intensity which means
the condition T∗

2 > 0 in (1.3) makes sense. It is also known that in
order for the equation in (1.4) to be elliptic, the first two conditions in
(1.3) are necessary. Further, the last condition of (1.3) means that the
elastic deformations precede the plastic ones.

Let u = u(x, y, ϕ; f) be the solution of the nonlinear boundary value
problem (1.4) for an angle ϕ and a function f . Then theoretical value
of the torque (moment of force) is given by

M [f ](ϕ) = 2

∫
Ω

u(x, y, ϕ; f)dx dy, ϕ ∈ [ϕ∗, ϕ
∗], ϕ∗ > 0,(1.5)

i.e., the torque is equal to twice the volume enclosed within the stress
surface u(x, y) [11].

For a given function f(T 2) and the angle ϕ, the problem (1.4) is
called the direct (forward) problem. The associated inverse problem

consists of determining the pair of functions

{
u(x, y), f(T 2)

}
from the

following nonlocal nonlinear identification problem:
−∇.

(
f(T 2)∇u

)
= 2ϕ, (x, y) ∈ Ω ⊂ R2,

u(x, y) = 0, (x, y) ∈ ∂Ω,

2

∫
Ω

u(x, y;ϕi)dx dy =Mi, i = 1, · · · , N,
(1.6)

whereMi :=M(ϕi) are the measured values of the torque, (measured
output data) corresponding to the angles ϕi, i = 1, · · · , N and N > 1
is the number of measurements. These discrete values are assumed to
be given during the quasistatic process of torsion, given by the angle
of twist ϕi ∈ [ϕ∗, ϕ

∗]. Therefore in the considered physical model the
quasistatic process of torsion is simulated by the monotone increasing
values 0 < ϕ∗ = ϕ1 < ϕ2 < · · · < ϕN = ϕ∗ of the angle ϕ ∈ [ϕ∗, ϕ

∗].
Hence the torque, defined by (1.5), may be considered as a function
of the angle ϕ > 0. The direct problem (1.4) and the inverse problem
(1.6) have been well-studied both theoretically and numerically in the
mathematical literature (see [6], [7], [8], [22], [23], [24]).
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However in real applications the torsion process is not quasistatic,
it depends on the time. The mathematical model of the real torsion
process is given by the following evolutional problem: ut −∇.

(
f(T 2)∇u

)
= 2t, (x, y, t) ∈ ΩT ,

u(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ),

(1.7)

where ΩT := Ω × (0, T ) and T is a final time. The associated inverse

problem consists of determining the pair of functions

{
u(x, y, t), f(T 2)

}
from the following nonlocal nonlinear identification problem:

ut −∇.
(
f(T 2)∇u

)
= 2t, (x, y, t) ∈ ΩT ,

u(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ),

2

∫
Ω

u(x, y; ti)dx dy =M(ti), i = 1, · · · , N,
(1.8)

where Mi := M(ti), i = 1, · · · , N are the measured values of the
torque. Similar to (1.5), the theoretical value of the torque is defined
by

M [f ](t) = 2

∫
Ω

u(x, y, t; f)dx dy, t ∈ [t∗, t
∗], t∗ > 0,(1.9)

where u(x, y, t; f) is a solution of (1.7) for a given function f .

The direct problem (1.7) and the inverse problem (1.8) have been
well-studied both theoretically and numerically in the mathematical
literature [25].

Now we define the quasi-solution of the inverse problem (1.8). For
this purpose, we reformulate the inverse problem. We denote the
unique solution of the nonlinear direct problem (1.7) by u(x, y, t; f) for
a given f ∈ F. Then for each t ∈ (0, T ), the inverse coefficient problem
can be formulated as the following nonlinear functional equation:

2

∫
Ω

u(x, y, t; f)dx dy = M(t), f ∈ F.(1.10)

Let H̊1(Ω) :=
{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
and V = L2

(
0, T ; H̊1(Ω)

)
.

Then the weak solution of the direct problem (1.7) is defined as a so-
lution of the following abstract operator equation:

Lu+ Au = F,(1.11)
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where the nonlinear operator A : V → V ? and the linear functional F
are defined by

< Au, v >V =

∫ T
0

∫
Ω

f(|∇u|2)∇u∇v dx dy dt,∀u, v ∈ V,

< F, v >V =

∫ T
0

∫
Ω

s(x, y, t)v(x, y, t) dx dy dt, ∀v ∈ V,

s(x, y, t) = 2t and L := D(L) ⊂ V → V ? is defined by Lu = ut. We
obtain the weak solution of the problem (6) by multiplying the evolu-
tion equation by a function v ∈ V , and then integrating the resulting
equation using integration by parts. Based on this weak solution, we
can define the following cost functional

(1.12) J(f) =

∫ T
0

[
2

∫
Ω

u(x, y, t; f)dx dy −M(t)

]2

dt, f ∈ F.

A quasi-solution of the inverse problem (1.8) is defined as a solution of
the following minimization problem:

J(f∗) = inf
f∈F

J(f).(1.13)

In [25], continuity of the functional J(f) and compactness of the
class of admissible coefficients F are proved. This means the inverse
problem (1.8) has a quasi-solution.

In the last years, there are some works related to simultaneously de-
termination of unknowns in an inverse problem, for example, see [13],
[26]. To the best of the authors knowledge, there is no work related to
determination of the strain hardening exponent κ, the shear modulus
G and the yield stress T0

2 simultaneously in an inverse problem, while
there are many papers that investigate the determination of the ma-
terial properties, for example, see [1], [2], [9], [10], [14], [15], [16], [19],
[21], [27]. This paper achieves that to some extent.

This article is organized as follows: In the next section, we solve the
nonlinear direct problem (1.7) and analyze the numerical solution. In
Section 3, we present our method. Some numerical examples are given
to show the efficiency of the method in Section 4 . The conclusions,
possible directions and applications to the engineering problems are
given in Section 5.
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2. Numerical solution of the nonlinear direct problem

In this section, we solve the nonlinear direct problem (1.7). For the
numerical solution, the following semi-implicit finite difference scheme
is used:

v
(k+1)
i,j − v(k)

i,j

τ
− 1

h1

[
f̃i+1/2,j

v
(k+1)
i+1,j − v

(k+1)
i,j

h1

− f̃i−1/2,j

v
(k+1)
i,j − v(k+1)

i−1,j

h1

]

− 1

h2

[
f̃i,j+1/2

v
(k+1)
i,j+1 − v

(k+1)
i,j

h2

− f̃i,j−1/2

v
(k+1)
i,j − v(k+1)

i,j−1

h2

]
= 2t(k+1),

where (xi, yj) ∈ wh, wh :=

{
(xi, yj) : xi = ih1, yj = jh2, i =

0, N1 − 1, j = 0, N2 − 1

}
is the piecewise uniform mesh with the mesh

steps h1 = a/(N1 − 1), h2 = b/(N2 − 1), vi,j := u(k)(xi, yj) are the
nodal values of the function (kth iteration), and τ is the time step.

The coefficients f̃p,q are defined as follows:

f̃i±1/2,j = f

(∣∣∇u(k)(xi±1/2, yj)
∣∣2), f̃i,j±1/2 = f

(∣∣∇u(k)(xi, yj±1/2)
∣∣2).

The accuracy of the above difference scheme is O(h2
1 +h2

2 +τ). It is well
known that the above semi-implicit finite difference scheme is uncondi-
tionally stable and does not suffer from any time step size restriction.
In other words, while explicit schemes for very small time steps which
leads to poor efficiency and limits their practical use, the semi-implicit
scheme is stable for all time steps.

We note that solution of the inverse problem is closely related to
solution of the direct problem since the outputs of the numerical solu-
tion of the direct problem are used as inputs for the inverse problem.
Therefore, we test the difference scheme on some numerical examples.
The first series of the numerical experiments is related to numeri-
cal solution of the nonlinear direct problem (1.7). For this purpose,
u(x, y, t) = sin(πx) sin(πy) t is taken to be analytical solution of the

nonlinear equation ut − ∇.
(
g(|∇u|2)∇u

)
= F (x, y, t) with the func-

tion f(T 2) =
1√

1 + T 2
, T 2 = u2

x + u2
y and appropriately chosen source

function F (x, y, t). It is clear that u(x, y, t) satisfies both initial and
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boundary conditions in (1.7). In solving the nonlinear direct problem,
iterations are repeated until convergence is reached in the sense that

max
(xi,yj)∈wh

∣∣∣∣u(n)
i,j − u

(n−1)
i,j

∣∣∣∣ < ε,

where ε > 0 is a given stopping criterion. We take a = b = 1 and
t ∈ (0, 1). The other inputs are shown in Table 1 for t = 0.5. The
absolute error, defined by εuh =

∥∥(u − uh)
∥∥
∞ and the relative error,

defined by δuh =
∥∥(u−uh)/u

∥∥
∞ are also shown in Table 1, where

∥∥.∥∥∞
denotes maximum norm, u and uh denote the exact and approximate
solutions of the nonlinear direct problem respectively. As it is seen
in the Table 1, we test the above difference scheme for some different
number of the mesh points N1 and N2, the time step τ , the stopping
criterion ε and the initial approximation u0. The experiments clearly
indicate that the initial guess is the main factor affecting the accuracy
of the solutions. As the first initial approximation, the function u0 ≡ 0
is taken which satisfies both initial and boundary conditions in (1.7).
The number of the iterations are found to be around 10 at each time
t. This is closely related with the choice of the initial approximation
u0. The function u0 = t (x2 − x) (y2 − y) is taken another initial ap-
proximation which also satisfies both initial and boundary conditions
in (1.7). In this case, the corresponding absolute and relative errors are
relatively increased. The effect of the initial approximation becomes
apparent in the last two experiments where u0 = x2 + yt + 1 is taken
to be an initial approximation which satisfies neither the initial con-
dition nor the boundary condition, and it is observed that the results
are not satisfactory. The number of iterations are found to be around
70 for the last initial approximation. One way to overcome this dif-
ficulty is to choose the initial approximation closely enough to both
initial and boundary conditions. It should also be noted that the same
initial guesses for different mesh points are applied and it is observed
that they are not very far from the exact solution. In the seventh ex-
periment, the time step τ is taken to be 0.001, but the corresponding
absolute and relative errors are increased because of the computational
noise factors. Based on above results, the sixth experiment is optimal
and quite satisfactory. So the parameters N1 = N2 = 41, τ = 0.01
and ε = 10−5 are taken optimal ones in all computational experiments
below. It also seems that the initial iteration u0 = 0 is optimal for
the numerical solution of the nonlinear direct problem (1.7) since it
satisfies both initial and boundary conditions.
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Next we examine the above difference scheme by using its conver-
gence order. The convergence order is found by the following useful
formula: [6], [20]

Convergence order:= log h1
h2

εuh1
εuh2

.

By Table 1, for N1 = N2 = 20, N1 = N2 = 40, τ = 0.1 and ε = 10−4,
the convergence order of space is found to be 2.03 as expected with
the order O(h2

1 + h2
2 + τ) of the method. For τ1 = 0.1, τ2 = 0.2,

N1 = N2 = 40 and ε = 10−4 the convergence order of time is found to
be 1.04 as expected with the order O(h2

1 + h2
2 + τ) of the method.

For many engineering materials, the function f(T 2) in (1.4) has the
following form:

f(T 2) =

{
1/G, T 2 ≤ T0

2,

1/G
(
T 2/T0

2
)0.5(1−κ)

, T0
2 < T 2,

(2.1)

which corresponds to the Ramberg-Osgood curve σi = σ0(ei/e0)κ,
where κ ∈ (0, 1) is the strain hardening exponent. The values κ = 1
and κ = 0 correspond to pure elastic and pure plastic cases respec-
tively. Evidently, this function satisfies all conditions in (1.3). The
Young’s modulus E are taken as E = 210 Gpa (equivalently G = 80.77
Gpa) and E = 110 Gpa (equivalently G = 42.30 Gpa); the yield stress
T0

2 are taken as T0
2 = 0.027 and T0

2 = 0.020 for stiff and soft en-
gineering materials respectively, [6], [7], [8], [22], [23]. The nonlinear
direct problem (1.7) is solved for the function f(T 2), defined by (2.1),
and the torques for a few times are obtained by applying the numerical
integration trapezoidal formula. The results are shown in Table 2 and
Table 3. These and more such pairs (ti,Mi) will be used as input data
for the numerical solution of the inverse problem. We also compute
the value of max

x∈Ω
|∇u|2 for each time and find that this value is less

than 0.027 and 0.020 respectively for the first experiments (i = 1) in
Table 2 and Table 3, which means i = 1 corresponds to the elastic case.
But the other experiments correspond to the plastic cases as shown in
Table 2 and Table 3.

In the pure elastic case, the nonlinear direct problem (1.7) becomes ut − k∆u = 2t, (x, y, t) ∈ ΩT ,
u(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ),

(2.2)
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where k = 1/G. The solution of the problem (2.2) is given by [18]

u(x, y, t) =

∫ t

0

∞∑
n=1

Bmn(s) sin

(
mπx

a

)
sin

(
nπy

b

)
e

(
−kπ2

(
m2

a2
+n2

b2

))(
t−s
)
ds,

where Bmn =
4

ab
2s

∫
Ω

sin

(
mπx

a

)
sin

(
nπy

b

)
dx dy; m,n ∈ N × N. It

is clear from (2.2) that although the problem (1.7) is nonlinear, it is
reduced to a linear one in the pure elastic case. Some applications of
this formula can be found in [25]. We also verify our numerical re-
sults in Table 2 and Table 3 for pure elastic case (i = 1) by using
the above explicit formula. The absolute error and the relative er-
ror is found around 10−4 and 15% respectively, which are in acceptable
bounds since the values of torque is very small in the pure elastic cases.

As it is known, a problem is said to be well-posed or properly-posed
in the sense of Hadamard if it has the following three properties: There
exists a solution of the problem (existence), there is at most one so-
lution of the problem (uniqueness), the solution depends continuously
on the data (stability). If at least one of these properties does not
hold then the problem is called ill-posed or improperly-posed. As it
is known in the inverse problems field, like most inverse problems of
the mathematical physics, the inverse coefficient problems for parabolic
equations are severely ill-posed problems since the third condition is
not satisfied, that is, small changes in the input data may lead to large
deviations in the output. To show this feature of the inverse problem
(1.8), two values κ1 = 0.2 and κ2 = 0.8 of the strain hardening ex-
ponent are taken and the corresponding functions f(T 2) are drawn in
Figure 1 (right figures) for stiff and soft materials respectively. Also the
torques are found from numerical solution of the corresponding direct
problems and numerical integration trapezoidal formula (left figures).
This Figure shows that, for each class of the materials, the outputs
are close enough although the functions f(T 2) are quite different. This
result illustrates the ill-posedness of the considered inverse problem.
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Table 1. Data for two initial iterations and correspond-
ing errors.

No N1 N2 τ ε u0 εuh δuh
1 11 11 0.1 10−4 0 4.8× 10−3 1.8× 10−2

2 21 21 0.1 10−4 0 1.1× 10−3 5.7× 10−3

3 41 41 0.1 10−4 0 2.7× 10−4 1.5× 10−3

4 41 41 0.05 10−4 0 3.0× 10−5 3.4× 10−4

5 41 41 0.05 10−5 0 2.9× 10−5 3.3× 10−4

6 41 41 0.01 10−5 0 9.5× 10−6 1.9× 10−4

7 41 41 0.001 10−5 0 2.9× 10−4 1.5× 10−3

8 41 41 0.05 10−5 t(x2 − x)(y2 − y) 2.9× 10−4 1.5× 10−3

9 41 41 0.01 10−5 t(x2 − x)(y2 − y) 2.9× 10−4 1.5× 10−3

10 41 41 0.05 10−5 x2 + yt+ 1 5.7× 10−1 5.6
11 41 41 0.01 10−5 x2 + yt+ 1 5.0× 10−1 4.0
12 21 21 0.001 10−7 x2 + yt+ 1 4.8× 10−1 2.4
13 21 21 0.0001 10−9 x2 + yt+ 1 4.8× 10−1 2.4

Table 2. Synthetic noise free data for stiff materials:
E = 210 Gpa, T0

2 = 0.027, κ = 0.5.

i ti Mi Elastic Plastic
1 0.04 0.0037

√

2 0.2 0.0708
√

3 0.4 0.2457
√

4 0.6 0.4897
√

5 0.8 0.7764
√

Table 3. Synthetic noise free data for soft materials:
E = 110 Gpa, T0

2 = 0.020, κ = 0.7.

i ti Mi Elastic Plastic
1 0.04 0.036

√

2 0.1 0.0191
√

3 0.3 0.1411
√

4 0.5 0.3440
√

5 0.7 0.6011
√
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Figure 1. Illustration of the ill-posedness of the inverse problem

3. Overview of the method

In this section, first we explain and compare the two classical meth-
ods for finding the numerical solution of (1.6), i.e., the parametriza-
tion method and semi-analytic inversion method then we present our
numerical method . The parametrization method is based on the dis-
cretization of the unknown curve (2.1), by using a piecewise linear
continuous curve fh(T

2), which has the form [8]:

fh(T
2) =


β0 = 1/G, T 2 ∈

(
0, T0

2
]
,

β0 − β1

(
T 2 − T0

2
)
, T 2 ∈

(
T0

2, T1
2
]
,

β0 −
N−1∑
i=1

[
βi(Ti

2 − Ti−1
2)

]
− βN

(
T 2 − T 2

N−1

)
, T 2 ∈

(
TN−1

2, TN
2
]
.

In the parametrization method, the unknown parameters βi > 0, i =
1, N need to be determined step by step, beginning from the parameter
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β0 = 1/G. At each ith state, one needs to determine the parameter βi
using the pair

(
ϕi,Mi

)
.

Although the parametrization algorithm is used for numerical solu-
tion of some class of inverse coefficients problems, it has some disad-
vantages. The first one is that the application of this method requires
a huge amount of measured output data. This is of course undesirable
since getting these data is costly. The second one is that the unknown
curve can not be determined completely, but only partially. The third
one is the ill-posedness of the method. This situation is illustrated in
[8] and a regularization method is proposed.

To overcome these difficulties a new method, called the semi-analytic
inversion method, is introduced in [7]. The semi-analytic inversion
method is based on the determination of the three main unknowns of
(2.1), namely the shear modulus G > 0, the yield stress T0

2 and the
strain hardening exponent κ ∈ (0, 1). The first distinguishable feature
of this algorithm is that it uses only a few values of the data

(
ϕi,Mi

)
.

Furthermore, the new method determines the unknown curve com-
pletely. The second distinguishable feature of this method is its well-
posedness. Despite these favorable features, in the semi-analytic inver-
sion method the algorithm used for determination of the yield stress is
complicated and it needs many parameters to be determined before ap-
plying it. This is the main disadvantage of the semi-analytic inversion
method. Because of this reason, a modification of the semi-analytic
inversion method is given and analyzed in [24]. The modified semi-
analytic inversion method does not require complicated calculations
and it finds the yield stress using a minimum number of parameters.

In both parametrization and semi-analytic inversion method, the
following error functional is minimized:

max
ϕ∈[ϕ∗,ϕ∗]

∣∣∣∣2∫
Ω

u(x, y; f ;ϕ)dxdy −M(ϕ)

∣∣∣∣, f ∈ F.

Using the error functional above and modifying these two methods ac-
cordingly, one can apply them to the inverse problem (1.8), see [25] for
details. But in the inverse problems of parabolic and hyperbolic type,
the error functional in the form (1.12) is more useful and reasonable,
[3], [4], [5], [17].

In our method we minimize the error functional given by J(f) in
(1.12). Since f(T 2) is in the form of (2.1), the optimal f(T 2) will
be sought among the functions of the form (2.1). In this case, the
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error functional is reduced to a real valued function of three variables,
because f is defined via κ, G and T0

2. We denote the function f
corresponding to κ, G and T0

2 as f(κ,G,T0
2) and the solution of the

direction problem corresponding to f(κ,G,T0
2)

(
i.e. u(x, y, t; f(κ,G,T0

2))
)

as u(κ,G,T0
2)(x, y, t). Now the error functional defined by (1.12) can be

written as

J(κ,G, T0
2) =

∥∥∥∥2

∫
Ω

u(κ,G,T0
2)(x, y, t)dxdy −M(t)

∥∥∥∥2

2

=

∫ T
0

[
2

∫
Ω

u(κ,G,T0
2)(x, y, t)dxdy −M(t)

]2

dt.

Since the continuity of this functional is proved in the set of admis-
sible functions F, this functional now a function of three variables is
continuous. The method for minimizing J(κ,G, T0

2) depends on the
properties of J , e.g., convexity, differentiability and etc. In our case,
the convexity or differentiability of J(κ,G, T0

2) is not clear due to the
term uκ,G,T02(x, y, t). However, we do not envision a major drawback

in assuming the differentiability of J(κ,G, T0
2) in numerical implemen-

tations. For this reason, we proceed the minimization of J(κ,G, T0
2)

by the steepest descent method which will utilize the gradient of J . In
this method, the algorithm starts with an initial point

(
κ0, G0, (T0

2)0

)
,

then the point providing the minimum is approximated by the points(
κi+1, Gi+1, (T0

2)i+1

)
=
(
κi, Gi, (T0

2)i
)

+
(
4κi,4Gi,4(T0

2)i
)
,

where
(
4κi,4Gi,4(T0

2)i)
)

is the feasible direction which minimizes
the function

Ai(4κ,4G,4T 2
0 ) = J

(
(κi, Gi, (T0

2)i) + (4κ,4G,4T 2
0 )
)
.

This procedure is repeated until a stopping criterion is satisfied, i.e,∥∥∥∥(4κi,4Gi,4(T0
2)i)

∥∥∥∥
2

< ε

or ∣∣∣∣J(κi+1, Gi+1, (T0
2)i+1)− J(κi, Gi, (T0

2)i)

∣∣∣∣ < ε

or a certain number of iterations. In minimization of

J
(
(κi, Gi, (T0

2)i) + (4κ,4G,4T 2
0 )
)

, we use the following estimate on u(κi,Gi,(T0
2)i))+(4κ,4G4T 2

0 )(x, y, t):
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u(κi,Gi,(T0
2)i)+(4κ,4G,4T )(x, y, t) ' u(κi,Gi,(T0

2)i)(x, y, t)

+

〈
∇u(κi,Gi,(T0

2)i)(x, y, t), (4κ,4G,4T0
2)

〉
,

where∇ denotes the gradient of u(κ,G,T0
2)(x, y, t) with respect to (κ,G, T0

2).

Hence Ai(4κ,4G,4T0
2) turns out to be the following:

Ai(4κ,4G,4T0
2) =

∥∥∥∥2

∫
Ω

[
u(κi,Gi,(T0

2)i)(x, y, t)

+

〈
∇u(κi,Gi,(T0

2)i)(x, y, t) · (4κ,4G,4T0
2)

〉]
dxdy −M(t)

∥∥∥∥2

2

+ λ
∥∥(4κ,4G,4T0

2)
∥∥2

2
,

where λ denotes the regularization parameter which will be needed in
handling the noisy data.

In numerical calculations, we note that ‖·‖2 can be discretized by
using a finite number of points in [0, T ]. We set t1 = 0 < t2 < · · · <
tq = T , hence Ai(4κ,4G,4T0

2) has its new form as

Ai(4κ,4G,4T0
2) '

q∑
k=1

(
2

∫
Ω

u(κi,Gi,(T0
2)i))(x, y, tk)dxdy

+2

∫
Ω

〈
∇u(κi,Gi,(T0

2)i))(x, y, tk), (4κ,4G,4T0
2)

〉
dxdy −M(tk)

)2

+ λ
∥∥(4κ,4G,4T0

2)
∥∥2

2
.

(3.1)

Now the minimization of this problem is a least squares problem
whose solution leads to the following normal equation

(λI + ATA)(4κ,4G,4T0
2)T = ATK,

where

A =

[(
2

∫
Ω

∇u(κi,Gi,(T0
2)i)(x, y, t1)dxdy

)T

· · ·(
2

∫
Ω

∇u(κi,Gi,(T0
2)i)(x, y, tq)dxdy

)T]
,
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and

K =

[
2

∫
Ω

u(κi,Gi,(T0
2)i)(x, y, t1)dxdy −M(t1) · · ·

2

∫
Ω

u(κi,Gi,(T0
2)i)(x, y, tq)dxdy −M(tq)

]T
.

Now the optimal direction is found by

(3.2) (4κ,4G,4T0
2)T = (λI + ATA)−1ATK.

In forming A, the computation of the vector

∇u(κi,Gi,(T0
2)i)(x, y, tk) =

(
∇κu(κi,Gi,(T0

2)i)(x, y, tk),∇Gu(κi,Gi,(T0
2)i)(x, y, tk)

)
can be achieved by the following estimates:

∇κu(κi,Gi,(T0
2)i)(x, y, tk) =

u(κi+h,Gi,(T0
2)i)(x, y, tk)− u(κi,Gi,(T0

2)i)(x, y, tk)

h
,

(3.3)

∇Gu(κi,Gi,(T0
2)i)(x, y, tk) =

u(κi,Gi+k,(T0
2)i)(x, y, tk)− u(κi,Gi,(T0

2)i)(x, y, tk)

k
,

(3.4)

∇T0
2u(κi,Gi,(T0

2)i)(x, y, tk) =

u(κi,Gi,(T0
2)i+m)(x, y, tk)− u(κi,Gi,(T0

2)i)(x, y, tk)

m
,

(3.5)

where h, k and m are the differential steps for κ,G and T0
2.

The algorithm can be summarized as the following steps:

Step1. Set (κ0, G0, (T0
2)0), λ and a stop criterion , i.e., k or ε

(
iteration

number or size of

∥∥∥∥(4κi,4Gi,4(T0
2)i)

∥∥∥∥
2

)
.

Step2. Calculate
(
4κi,4Gi,4(T0

2)i
)

using 3.2 and set
(
κi+1, Gi+1, (T0

2)i+1

)
=(

κi, Gi, (T0
2)i
)

+
(
4κi,4Gi,4(T0

2)i
)

Step3. Stop when the stopping criterion is achieved.
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4. Implementation of the method: Examples and results

In this section, we explain the results of the examples and give tech-
nical details about the implementation of the algorithm. The examples
are simulated by using synthetic noise free data for stiff and soft ma-
terials respectively. The optimal values for both examples are preset.
The measured output data which is required to solve the inverse prob-
lem (in our case M(ti)’s) is obtained from the numerical solution of
the direct problem for the optimal values of

(
κ,G, , T0

2
)
. The direct

problem is solved using the semi-implicit finite difference scheme given
in Section2. This scheme involves choosing the size of the meshgrid
N1 × N2, time step τ and the initial approximation u0. A brief sum-
mary of the error analysis of these variables has been provided in the
Section2. In solving the inverse problem, the algorithm requires an ini-
tial vector κ0, G0, (T0

2)0 and a stopping criterion. In each step of the
inverse problem algorithm, the solution of each direct problem is found
by using the same size of the meshgrid N1 × N2, the same time step
τ and the same initial approximation u0 as above. The stop criterion

for the iteration is 100 or ε = 0.01

(∥∥∥∥(4κi,4Gi,4(T0
2)i

∥∥∥∥
2

= 0.01)
. Whichever is achieved first stops the algorithm. In computing the

integral in (3.1), the trapezoid rule is used and the meshgrid N1 ×N2

is taken as above.

In both examples, the inverse algorithm is first applied to the noise-
free synthetic data. Then a 4% noise is added to the initial data

(
hence

M(ti) is taken to be 1.04 M(ti)
)

and the algorithm is run using the
same initial values that have been used for the noise free data. Since the
processing time for the algorithm is considerably high for Example 1,
we examine the noisy data only in Example 2. The results are obtained
and a relative error is calculated for each result corresponding to each
initial value. The relative error is used because the numerical values
of u(x, y, t) is already small. The relative error is calculated as the
following:

e =

∥∥uκ,G,T02(x, y, t)− uκ′,G′,T ′02(x, y, t)∥∥∥∥uκ,G,T02(x, y, t)∥∥ ,

where uκ,G,T02(x, y, t) is the solution of the direct problem correspond-

ing to fκ,G,T02 and κ′, G′, T ′0
2

denote the preset values (hence optimal
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values) in each example and the norm is defined as

‖u(x, y, t)‖ = max
ti

(∑
k,m

u(xk, ym, ti)
2

)
,

where i = 1 · · · q, k = 1 · · ·N1 and m = 1 · · ·N2. For each initial guess,
the relative error for the noisy data is observed, then the algorithm is
run for the noisy data using the initial guess with the biggest relative
error with several regularization parameters (in our case since all rela-
tive errors are same, we take the first initial guess). Now we examine
the algorithm with two inverse problems.

Example 1. In this example κ = 0.5, G = 80.77 and T0
2 = 0.027 are

preset for the problem. The algorithm is run for different initial values
of κ,G, T0

2 for the noise-free data. Table 4 shows the initial guesses
and the results obtained for the first example. We note that the data
in Table 4 is obtained for the meshgrid N1×N2 = 41×41 and (number
ti’s) q = 101.

Example 2. In this example κ = 0.7, G = 42.33 and T0
2 = 0.020

are preset for the problem. The algorithm is run for different initial
values of κ,G, T0

2 for both noise-free data and noisy data. Table 5
shows the initial guesses and the results obtained for the second ex-
ample. We note that the data in Table 5 is obtained for the meshgrid
N1 × N2 = 41 × 41 and (number ti’s) q = 31. Table 6 shows the re-
sults for the noisy data. Table 7 shows the results for different choices
of regularization parameters and relative error for a chosen initial guess.

Now we give some remarks on the implementation of the algorithm.
The main factor affecting the algorithm’s efficiency and the precision is
the initial guess for κ,G and T0

2. In noisy free case, the initial guess has
to be made close enough to the optimal values. If the initial guesses
are far from the optimal values, either the inverse algorithm fails to
converge to a value, mostly due to singularity of ATA or converges to
a value which is not optimal. The latter case is normal because the
discrete error functional can have many local minimizers. In this case,
if some upper and lower bounds for κ,G and T0

2 are already known,
one can make a small lattice of initial points within these bounds, then
run the algorithm at each lattice point and get results and refine the
initial points.
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In noisy data case, the ill-posedness of the inverse problem becomes
clear. As seen in Table 6, the algorithm converges to a value which is
far from the optimal values of κ,G and T0

2. However, the relative error
in terms of the solution of the direct problem seems to be as small as
0.0029. This is compatible with the theoretical predictions stated in
previous sections about inverse problems: one can get same solution for
different choices of f . The convergence of the algorithm remains to be
a big advantage of the algorithm in noisy data case. In order to fix the
results in noisy data case, several choices of regularization parameters
are used for the first initial guess. Table 7 clearly shows that the reg-
ularization parameters does not change the results and relative errors.
Besides the constant regularization parameters given in Table 7, also
changing the regularization in each step of the algorithm is applied.
The results are not established here because it does not change results
as well. To the best of our knowledge, there is no well-established way
of choosing regularization parameters for nonlinear inverse problems.
One obvious help of the regularization parameter is that it prevents
AAT getting singular which emerges in some cases related to meshgrid
sizes of the direct problem.

In the implementations using the optimal mesh grid sizes given in
Table 1 for the solution of the direct problem at each step seems to con-
tribute to the precision of the inverse problem algorithm, however it is
very costly in processing time. Another key factor in inverse algorithm
turns out to be the number of ti’s, i.e., q. In Example 1, taking q = 11
or less leads to the singularity of AAT. In that case, one can make use
of regularization parameter to run the algorithm but the convergence
of the algorithm and the precision of the results will be unsafe. In our
experiments, q = 31 seems to work well. In Example 1, taking q = 101
seems to work well. These observations imply that using the optimal
N1 × N2 and u0 in the solution of the direct problem in the inverse
problem algorithm works well and the larger the number ti’s, the more
stable the results are. However, taking q = 101 extends the processing
time of the algorithm enormously. If the processing time is not im-
portant for an application, our observations have shown that in each
problem it is better to use the optimal meshgrid size given in Table 1.

In summary, the main factors affecting the efficiency and the accu-
racy of the algorithm are the initial guesses and the mesh grid sizes
in both problems. In noisy data case the initial guesses turned out
to be more important. Using regularization parameter seems to make
algorithm converge to some results, however, it is obviously not the
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optimal ones. There are also some possible research directions in this
problem about the relation of regularization parameter and small mesh
grid sizes.
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5. Concluding Remarks

We study an inverse problem for the nonlinear evolution equation

ut − ∇.
(
f(T 2)∇u

)
= 2t, (x, y, t) ∈ ΩT := Ω × (0, T ), Ω ⊂ R2.

The inverse problem consists of determining the unknown coefficient
f = f(T 2), T 2 := |∇u|2 by measured output data. The measured out-
put data is nonlocal and has a precise physical meaning: It is the
tendency of a force to rotate an object about an axis. In the in-
verse problem, we determine three unknown parameters of the function
f = f(T 2) simultaneously for stiff and soft engineering materials. Af-
ter we solve the direct problem, we reformulate the inverse problem
as a minimization problem. Then a method based on discretization of
the minimization problem, steepest descent method and least squares
approach is proposed for the numerical solution of the inverse problem.
The inverse problem is solved for both noise free and noisy data. The
results illustrate applicability and accuracy of the proposed method to
some extent.

The authors of this paper plan to consider determination of f =

f(T 2), T 2 := |∇u|2 from the nonlocal nonlinear equation:
∂β

∂tβ
u(x, y, t)−

∇.
(
f(T 2)∇u

)
= 2t, (x, y, t) ∈ ΩT , where β ∈ (0, 1) is the fractional

order of the time derivative,
∂β

∂tβ
u(x, t) is the Caputo time-fractional

derivative of the order 0 < β < 1. This nonlocal equation represents
elastoplastic torsion in an environment where anomalous torsion takes
place. After establishing existence and/or uniqueness of the solution
theoretically, we use the method proposed in this paper to solve the
inverse problem.

We also consider to use our method for solving some inverse prob-
lems for which the minimization problem can be written in a suitable
form to apply least squares approach.
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Table 4. Results for noise-free for given initial guesses.

Initial Guesses Results

(0.5,60,0.01) (0.5,80.8054,0.0269)
(0.3,90,0.03) (0.5,80.7558,0.0270)
(0.4,95,0.05) (0.5,80.8016,0.0269)

(0.35,100,0.01) (0.5,80.7880,0.0270)

Table 5. Results for noise-free for different initial guesses.

Initial Guesses Results

(0.6,35,0.015) (0.7001,42.3466,0.0196)
(0.8,50,0.025) (0.7001,42.3437,0.0197)
(0.55,55,0.01) (0.7001,42.3444,0.0196)
(0.75,60,0.03) (0.6999,42.2563,0.0204)
(0.78,30,0.015) (0.7000,42.3138,0.0199)
(0.6,50,0.027) (0.7001,42.3444,0.0196)

Table 6. Results for noisy data for given initial guesses
with corresponding relative errors.

Initial Values Results Relative Error

(0.6,35,0.015) (0.7901,113.7292,0.3142) 0.0029
(0.8,50,0.025) (0.7887,113.7249,0.3189) 0.0029
(0.55,55,0.01) (0.7880,113.7249,0.3212) 0.0029
(0.75,60,0.03) (0.7901,113.7291,0.3139) 0.0029
(0.78,30,0.015) (0.7889,113.7254,0.3181) 0.0029
(0.6,50,0.027) (0.7902,113.7293,0.3137) 0.0029
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Table 7. Results for noisy data for a chosen initial guess
with different regularization parameters and correspond-
ing relative errors.

Initial Values Results Regularization Parameters Relative Error

(0.6,35,0.015) (0.7902, 113.8854, 0.3148) 1 0.0029
(0.6,35,0.015) (0.7901, 113.8854, 0.3149) 2−1 0.0029
(0.6,35,0.015) (0.7901, 113.8854, 0.3149) 2−2 0.0029
(0.6,35,0.015) (0.7888, 113.8818, 0.3196) 2−3 0.0029
(0.6,35,0.015) (0.7901, 113.8855, 0.3149) 2−4 0.0029
(0.6,35,0.015) ( 0.7901, 113.8855, 0.3149) 2−5 0.0029
(0.6,35,0.015) (0.7901, 113.8855, 0.3149) 2−6 0.0029
(0.6,35,0.015) (0.7892, 113.8829, 0.3181) 10−6 0.0029
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