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Abstract. Fractional(nonlocal) diffusion equations replace the integer-
order derivatives in space and time by their fractional-order analogues
and they are used to model anomalous diffusion, especially in physics.
This paper is devoted to a nonlocal inverse problem related to the space-

time fractional equation
∂β

∂tβ
u(t, x) = −(−∆)α/2u(t, x), −1 < x <

1, 0 < t < T . The existence of the solution for the inverse problem
is proved by using quasi-solution method which is based on minimizing
an error functional between the output data and the additional data. In
this context, an input-output mapping is defined and continuity of the
mapping is established. The uniqueness of the solution for the inverse
problem is also proved by using eigenfunction expansion of the solution
and some basic properties of fractional Laplacian. A numerical method
based on discretization of the minimization problem, steepest descent
method and least squares approach is proposed for the solution of the
inverse problem. The numerical method determines the exponents of
the fractional time and space derivatives simultaneously. Numerical ex-
amples with noise free and noisy data illustrate applicability and high
accuracy of the proposed method.
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1. Introduction

In this paper, we study an inverse problem associated with the following
one dimensional space-time fractional diffusion problem


∂β

∂tβ
u(t, x) = −(−∆)α/2u(t, x), −1 < x < 1, 0 < t < T,

u(t,−1) = u(t, 1) = 0, 0 < t < T,
u(0, x) = f(x), −1 < x < 1,

(1.1)

where T > 0 is a final time, f(x) ∈ L2(−1, 1) is an initial function,
∂β

∂tβ
is

the Caputo fractional time derivative, (−∆)α/2 is the fractional Laplacian,
1
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β ∈
(

0,
1

2

)
and α ∈

(
1

2
, 2

)
are fractional order of the time and the space

derivatives respectively. For given inputs β, α and f(x), the problem (1.1)
is called the direct (forward) problem. Like most direct problems of the
mathematical physics, the problem (1.1) is well-posed, see the very recent
interesting paper[14] for details.

The inverse problem here consists of simultaneous determining the expo-
nents β and α of the fractional time and space derivatives, by means of the
observation data u(t, 0) = g(t), 0 < t < T . By this result one can expect
that by means of experiments the important parameters β and α character-
izing the anomalous diffusion can be identified simultaneously.

The classical diffusion equation ∂tu = ∆u is used to describe a cloud of
spreading particles at the macroscopic level. The point source solution is
a Gaussian probability density that predicts the relative particle concentra-
tion. For microscopic picture, Brownian motion is employed, which describes
the path of individual particles. The space-time fractional diffusion equa-

tion ∂βt u = −(−∆)α/2u with 0 < β < 1 and 0 < α < 2 is used to model
anomalous diffusion [17]. Here, the fractional derivative in time is used to
describe particle sticking and trapping phenomena and the fractional space
derivative is used to model long particle jumps. These two effects combined
together produces a concentration profile with a sharper peak, and heavier
tails.

In fractional diffusion equations the fractional time derivative with 0 <
β < 1 is used to model slow diffusion, and the exponent β is related to the
parameter specifying the large-time behavior of the waiting-time distribu-
tion function, see [20] and some of the references cited therein.

Recently, there has been a growing interest in inverse problems with frac-
tional derivatives. Usually, in these works a fractional time derivative is con-
sidered and determination of that under some additional condition(s) is the
inverse problem. These problems are physically and practically very impor-
tant. We list some of the important references [3, 6, 9, 16, 22, 23, 26, 27, 28].
The difference of the current study from these works is that there are two dif-
ferent parameters, which are the orders of time and space fractional deriva-
tives to be determined in the inverse problem considered. Furthermore, we
determine these parameters simultaneously. This is a very recent approach
in the inverse problems community, see [29] and some of the references cited
therein. On the other hand, in this paper, we follow a similar approach
and so the proofs are based on the eigenfunction expansion of the weak so-
lution to the initial/boundary value problem. This study can be regarded
as continuation of the series of works mentioned above on fractional inverse
problems.
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This paper is organized as follows: In the next section, for the sake of
the reader, we remind the analysis of the direct problem and introduce the
inverse problem. Section 3 includes both the statement and the proof of the
existence and uniqueness theorem. In the fourth section the inversion algo-
rithm is established theoretically. This algorithm is tested on two examples
with noisy and noise free additional data in Section 5. The conclusions and
possible directions on the problem are given in Section 6.

2. The direct and the inverse problems

As mentioned in Section 1, the fractional-time derivative considered in
(1.1) is the Caputo fractional derivative of order 0 < β < 1 and is defined
by

(2.1)
∂βf(t)

∂tβ
:=

1

Γ(1− β)

∫ t

0

∂f(r)

∂r

dr

(t− r)β
,

where Γ is the Gamma function. This was intended to properly handle
initial values [1, 2, 4], since its Laplace transform(LT) sβ f̃(s) − sβ−1f(0)
incorporates the initial value in the same way as the first derivative. Here,
f̃(s) is the usual Laplace transform. It is well-known that the Caputo de-
rivative has a continuous spectrum [2], with eigenfunctions given in terms
of the Mittag-Leffler function

Eβ(z) :=

∞∑
k=0

zk

Γ(1 + βk)
.

In fact, it is easy to see that, f(t) = Eβ(−λtβ) solves the eigenvalue problem

∂βf(t)

∂tβ
= −λf(t), f(0) = 1,

for any λ > 0. This is easily verified by differentiating term-by-term and

using the fact that tp has Caputo derivative tp−β
Γ(p+ 1)

Γ(p+ 1− β)
for p > 0 and

0 < β ≤ 1. See [2] for details.

If f is C1−function on [0,∞) satisfying |f ′(t)| ≤ Ctγ−1 for some γ > 0,

then by (2.1), the Caputo derivative
∂βf(t)

∂tβ
of f exists for all t > 0 and the

derivative is continuous in t > 0. Kilbas et al [13] and Podlubny [20] can be
referred for further properties of the Caputo derivative.

For 0 < α < 2, in (1.1) (−∆)α/2u denotes the fractional Laplacian. It
turns out that it is easier to define it by using the spectral decomposition
of the Laplace operator: We take

{
λ̄k, ψk

}
the eigenvalues and correspond-

ing eigenvectors of the Laplacian operator in Ω := (−1, 1) with Dirichlet
boundary conditions on ∂Ω :
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{
−∆ψk = λ̄kψk, in Ω,
ψk = 0, on ∂Ω.

We then define the operator −(−∆)α/2 by

−(−∆)α/2u :=

∞∑
k=0

ckψk(x) 7→ −
∞∑
k=0

ckλ̄
α/2
k ψk(x),

which maps Hα(Ω) onto L2(Ω).

The equation

∂β

∂tβ
u(t, x) = −(−∆)α/2u(t, x),

is the standard linear evolution equation involving fractional diffusion. This
is a model of so-called anomalous diffusion, a much studied topic in physics,
probability and finance. There are many studies related to the direct prob-
lem for the equation

∂β

∂tβ
u(t, x) = (Lu)(t, x) + F (t, x),

in the literature (see [10], [11], [23] and some of the references cited therein),
where L is symmetric uniformly elliptic operator. In these studies, the di-
rect problems are formulated under different boundary conditions and a
formula is derived for the solution using eigenfunction expansion. But only
a few of them involve fractional Laplace operator in spite of its physical and
practical importance (see [2], [12], [25] for example). The fractional powers

of the classical Laplace operator, namely −(−∆)α/2 are particular cases of
the infinitesimal generators of Lévy stable diffusion processes and appear in
anomalous diffusions in plasmas, flames propagation and chemical reactions
in liquids, population dynamics, geophysical fluid dynamics (see [12] and
[18] for an extensive list of current applications).

First of all, we need to define a solution formula for the direct problem
(1.1). By using eigenfunction expansion method, following [2], [10], [23],
[25], we get the following useful formula for the weak solution of the direct
problem (1.1)

(2.2) u(t, x) =

∞∑
n=1

< f, ψn > Eβ(−λntβ)ψn(x),

the series is convergent in C((0, T ];Hα(−1, 1)) where λn =
(
λ̄n
)α/2

, λ̄n and
{ψn}n≥1 are eigenvalues and eigenvectors of the classical Laplace operator ∆

respectively, i.e, −∆ψn = λ̄nψn. A simple calculation yields λ̄n =
n2π2

4
, n ≥
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1, n is odd so that λn = (
nπ

2
)α, n ≥ 1, n is odd. < · , · > denotes the

standard inner product on L2(−1, 1), Eβ(z) = Eβ,1(z) and Eβ,α(z) is the
generalized Mittag-Leffler function defined as follows

Eβ,α(z) :=
∞∑
k=0

zk

Γ(α+ βk)
.

We note that {λn}n≥1 is a sequence of positive numbers 0 < λ1 ≤ λ2 ≤
· · · , {ψn}n≥1 is an orthonormal basis for L2(−1, 1) and any f ∈ L2(−1, 1)
has the representation

f(x) =
∞∑
n=1

< f,ψn > ψn(x).

In [2], the authors prove that (2.2) is also a strong solution of the direct
problem (1.1) using the regularity property of u(t, x). The series on the
right-hand side of (2.2) is uniformly convergent in x ∈ [−1, 1] and t ∈ (0, T ],
see [23] and [25] for details.

In the existence and uniqueness theorem, we will need the solution of the
problem in the following form

(2.3)

 ∂β

∂tβ
u(t) = −(−∆)α/2u(t) + h(t), t > 0,

u(0) = g.

For this purpose, we set

U(t)g =
∞∑
n=1

〈
g, ψn

〉
Eβ(−λntβ)ψn(x), t ≥ 0,

and

V (t)g = tβ−1
∞∑
n=1

(〈
g, ψn

〉
Eβ,β(−λntβ)

)
ψn(x), t ≥ 0,

where λn and ψn(x) are eigenvalues and eigenfunctions of the operator −A
respectively. Then the solution of (2.3) is given by the following formula,
see [10]

(2.4) u(t) = U(t)g +

∫ t

0
V (t− s)h(s)ds, t > 0.

The following three theorems indicate some important properties of the
Mittag-Leffler function, (see Theorem 1.4 and Theorem 1.6 in [20] respec-
tively) which provide technical convenience in ensuing theorems ahead.

Lemma 2.1. If β < 2, µ is such that
πβ

2
< µ < min{πβ, π}, µ ≤ | arg(z)| ≤

π, then the following expansion holds

(2.5) Eβ(−z) =
1

zΓ(1− β)
+O(|z|−2).
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Lemma 2.2. If β < 2, α is arbitrary real number, µ is such that
πβ

2
< µ <

min{πβ, π}, µ ≤ | arg(z)| ≤ π, and C0 is a real constant, then

(2.6) |Eβ,α(z)| ≤ C0

1 + |z|
.

Lemma 2.3. If 0 ≤ β ≤ 1, then Eβ(−z) is completely monotone on (0,∞)
and all derivatives of Eβ(−z) are bounded on (0,∞).

Proof. See [21] for the proof of the complete monotonicity of Eβ(−z). In
the proof therein, we deduce Eβ(−z) > 0 for 0 ≤ β ≤ 1. Since it is complete

monotone, (−1)n
dn

dzn
Eβ(−z) ≥ 0, that is, E

(n)
β (−z) ≥ 0 holds for each posi-

tive integer n. With the preceding fact and
d

dz

(
E

(n)
β (−z)

)
= −E(n+1)

β (−z),

we deduce E
(n)
β (−z) is positive and decreasing hence bounded on (0,∞) for

each positive integer n. �

Before dealing with the inverse problem, we first prove the regularity of
the solution of the direct problem.

Theorem 2.1. Let f ∈ L2(Ω). There exists a unique weak solution u ∈
C((0, T ];L2(Ω))∩C([0, T ];Hα(Ω)) to (1.1) such that ∂βt u ∈ C((0, T ];L2(Ω)).
Moreover, there exists a constant C > 0 such that

(2.7) ||u(t, ·)||Hα(Ω) + ||∂βt u(t, ·)|| ≤ Ct−β||f ||.

Proof. Existence and uniqueness of weak solution to (1.1) can be shown
following [10, 23] . So we only prove (2.7). First,
(2.8)

||u(t, ·)||2 =

∥∥∥∥ ∞∑
n=1

< f,ψn > Eβ(−λntβ)

∥∥∥∥2

≤
∞∑
n=1

C2 < f,ψn >≤ C||f ||2.

Following exactly the proof of (2.18) in [23] we have

(2.9) ||(−∆)α/2u|| ≤ Ct−β||f ||.

In (2.8), since
∞∑
n=1

< f,ψn > Eβ(−λntβ)ψn is convergent in L2(Ω) uniformly

in t ∈ [0.T ], we see that u ∈ C([0, T ];L2(Ω)). Moreover, in (2.9), since
∞∑
n=1

λn < f, ψn > Eβ(−λntβ)ψn is convergent in L2(Ω) uniformly in t ∈ [δ, T ]

with any given δ > 0, we see that −(−∆)α/2u ∈ C((0, T ];L2(Ω)) that is

u ∈ C((0, T ];Hα(Ω)). By (1.1) we see that ∂βt u ∈ C((0, T ];L2(Ω)) and
consequently we have (2.7).

�
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Next we define the inverse problem. As it is known, a direct problem aims to
find a solution that satisfies given differential equation (ordinary, partial, or
fractional) and related to initial and boundary conditions. In some problems,
the main equation and the conditions are not sufficient to obtain the solution,
but, instead some additional conditions (also called measured output data
) are required. Such problems are called the inverse problems. In general,
the additional conditions may be given on the boundary, on the final time
or on the whole domain (also known as nonlocal condition). In this paper,
we use the following additional condition of Dirichlet type

u(t, 0) = g(t), 0 < t < T.(2.10)

The inverse problem here consists of determining the unknown orders β
and α of the time and space derivatives in the space-time fractional diffusion
problem (1.1) from the additional condition (2.10), that is, the problem
(1.1),(2.10) is called the inverse problem for the given inputs f(x) and g(t).

In the existence and uniqueness theorem, due to some technical reasons
in the proof of determining the exponents β and α, we will need a specific
class of the initial functions f(x) satisfying〈

f(x), ψn(x)
〉
> 0

{
or
〈
f(x), ψn(x)

〉
< 0

}
for odd n ≥ 1,(2.11)

where {ψn(x)}n≥1 is an orthonormal basis for L2(−1, 1). A similar class of
functions is used to prove the uniqueness in [29], see also [25]. Throughout
this paper, we assume that g(t) 6≡ 0.

To the best of the authors’ knowledge, there are not many works related
to inverse problems for the fractional diffusion equations involving fractional
Laplacian, see [25]. See also [15], where the author points out some open
problems related to inverse problems involving fractional derivatives. Our
current paper makes some contribution to this subject. Next section is
devoted to the statement and the proof of the existence and uniqueness
theorem for the inverse problem.

3. Statement and the proof of the main result

In this section, we state and prove the existence and uniqueness theorem.
First we prove an existence theorem for a solution of the inverse problem.
There are two main methods in the literature to prove existence of the
solution of inverse problems for the classical diffusion equations. The first
method is called the monotonicity method, which is based on the continuity
and the monotonicity of the input-output mapping [5], [24]. The second
method is called quasi-solution method, which is based on minimizing an
error functional between the output data and the additional data [8], [19]. In
this paper, we extend the quasi-solution method to the inverse problem for
the space-time fractional diffusion equation. For this purpose, let (β, α) ∈



8 S. TATAR, R. TINAZTEPE, AND S. ULUSOY

[β0, β1] × [α0, α1], where α >
1

2
, β, β̂ ∈

(
0,

1

2

)
, 0 < β0 ≤ β, β̂ ≤ β1 <

1

2
, and denote a unique solution of the direct problem that corresponds

to (β, α) by u(β, α)(x, t). We can obtain the output data u(β, α)(t, 0) for
(β, α) ∈ [β0, β1] × [α0, α1] by using the formula (2.2). We use the notation
u(β, α)(t, x) instead of u(t, x) to emphasize the dependency of the solution to
both β and α. An optimal idea for solving the inverse problem is to minimize
an error functional between the output data and the additional data. For a
given target function ϕ ∈ L2(0, T ), the square integrable functions on (0, T ),
we define the following minimization problem

min
(β,α)∈[β0,β1]×[α0,α1]

∥∥∥∥u(β, α)(t, 0)− ϕ
∥∥∥∥,(3.1)

throughout the paper we denote by ‖ · ‖ the norm in L2(Ω), while ‖ · ‖X
denotes the norm in the spaceX. We set the following input-output mapping

F (β, α)(t) : (β, α) −→ u(β, α)(t, 0), 0 < t < T.(3.2)

where F : [β0, β1]×[α0, α1] −→ L2(0, T ). We now provide the well-posedness
of this mapping: By (2.2), (2.10) and (2.6)∫ T

0
|u(t, 0)|2 dt =

∫ T

0
|g(t)|2 dt =

∫ T

0
|
∑
n≥1

< f,ψn > Eβ(−λntβ)ψn(0)|2 dt

≤

[
C

λ2
1

∞∑
n=1

< f,ψn >
2 ψn(0)2

]∫ T

0

1

t2β
dt.

The last integral is convergent provided that β <
1

2
. Now, we prove the

following theorem for the input output mapping (3.2).

Theorem 3.1. The input-output mapping, defined by (3.2) is continuous.

Proof. We regard u(t, x) as a mapping from t ∈ (0, T ) to L2(−1, 1) and

write u(t) = u(t, ·). Let u = u(β, α), v = u(β̂, α̂), y = u − v, β̂ > β. We see
that y solves the following problem

(3.3)


∂β

∂tβ
y = −(−∆)α/2y+(−∆)α̂/2v − (−∆)α/2v︸ ︷︷ ︸

=:I1

− ∂β

∂tβ
v +

∂β̂

∂tβ̂
v︸ ︷︷ ︸

=:I2

,

y(0) = 0.

We now estimate I1 and I2. To estimate I1 we note that by the definition of
the fractional Laplacian and the Mean Value Theorem
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I1 =
∞∑
k=0

ck[λ̄
α̂/2
k − λ̄α̂/2k ]ψk(x)

≤ C
∞∑
k=0

ck|α− α̂|λ̄γ̃ψk(x),

≤ C|α− α̂|
∞∑
k=0

ckλ̄
γ̃
kψk(x)

= C|α− α̂|(−∆)γ̃v

(3.4)

where γ̃ is a number between
α

2
and

α̂

2
. So, using the estimate (2.7)

||I1(t)|| ≤ C|α− α̂| ||(−∆)γ̃v||
≤ C|α− α̃| t−γ̃ ||f ||.

(3.5)

For I2 the following estimate holds

(3.6)
∥∥I2

∥∥ ≤ C ∣∣∣β − β̂∣∣∣ (1 + t−β̂).

We sketch the proof of (3.6), which follows [29] closely. Note that

I2 =

[
1− Γ(1− β̂)

Γ(1− β)

]
1

Γ(1− β̂)

∫ t

0
(t− s)−β̂v′(s) ds

− 1

Γ(1− β)

∫ t

0

[
(t− s)−β − (t− s)−β̂

]
v′(s) ds

=: I2,1 + I2,2.

(3.7)

First, by 0 < β0 ≤ β, β̂ ≤ β1 < 1

||I2,1(t)|| ≤ C|Γ(1− β̂)− Γ(1− β)| ||∂β̂t v||

≤ C|β − β̂|t−β̂, 0 < t < T,
(3.8)

where we have used the regularity estimate of the forward problem (2.8),
f ∈ L2(Ω) and the Lipschitz continuity of the Gamma function. Now, by
definition

||v′|| = Ctβ̂−1

∥∥∥∥ ∞∑
n=1

λn < f,ψn > Eβ̂(−λntβ̂)ψn

∥∥∥∥.
Hence, since {ψn}n∈N is an orthonormal basis in L2(Ω), we see that

(3.9) ||v′(t)|| ≤ Ctβ̂−1, 0 < t < T.
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Thus, by (3.9) we have

||I2,2(t)|| ≤ C
∫ t

0
|(t− s)−β − (t− s)−β̂| ||v′(s)|| ds

≤ C
∫ t

0
|(t− s)−β − (t− s)−β̂|sβ̂−1 ds.

(3.10)

The estimation of this last term (3.10) follows exactly from [23]. Hence we
have (3.6).

For sufficiently small and fixed ε > 0, we define a fractional power
(
−(−∆)α/2

)1+ ε
β

(for details, see [29] and references therein)

∥∥∥∥(−(−∆)α/2
)1+ ε

β
z

∥∥∥∥ =

( ∞∑
n=1

λ
2+ 2ε

β
n

〈
z, ψn

〉2
) 1

2

<∞.

If we apply (2.4) to (3.3) for g = 0, we get

(
− (−∆)α/2

) 1
4

+ε
y(τ) =

∫ τ

0

(
− (−∆)α/2

) 1
4

+ε
V (τ − s)

×

[
−(−∆)α̂/2v + (−∆)α/2v +

∂β

∂tβ
v − ∂β̂

∂tβ̂
v

]
ds, t > 0.

(3.11)

By using (2.6) and Parseval identity, we have for some function z ∈ L2(Ω)

∥∥∥∥(− (−∆)α/2
) 1

4
+ε
V (τ)z

∥∥∥∥ =

∥∥∥∥ ∞∑
n=1

τβ−1
〈
z, ψn

〉
Eβ,β(−λnτβ)λ

1
4

+ε
n ψn

∥∥∥∥
≤ C7

( ∞∑
n=1

τ2β−2
〈
z, ψn

〉2
(

1

1 + λnτβ

)2

λ
1
2

+2ε
n

) 1
2

≤ C7

(
τ2β−2τ−( 1

2
+2ε)β

) 1
2


∞∑
n=1

〈
z, ψn

〉2
((

λnτ
β
) 1

4
+ε

1 + λnτβ

)2

︸ ︷︷ ︸
=:I3


1
2

≤ C7τ
( 3
4
−ε)β−1‖z‖.

(3.12)
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In the last step, we use that I3 < 1. We conclude, by taking z = I1(s)+I2(s)
in (3.12), that

∥∥∥∥(− (−∆)α/2
) 1

4
+ε
y(τ)

∥∥∥∥
≤ C7

∫ τ

0
(τ − s)( 3

4
−ε)β−1

(∥∥∥∥− (−∆)α̂/2v + (−∆)α/2v

∥∥∥∥+

∥∥∥∥ ∂β∂tβ v − ∂β̂

∂tβ̂
v

∥∥∥∥
)
ds.

≤ C8

∫ τ

0
(τ − s)( 3

4
−ε)β−1

[
s−γ̃ |α− α̂|+

∣∣β − β̂∣∣ (1 + s−β̂
)]

ds.

(3.13)

Employing the Sobolev embedding H
1
2

+2ε in C([0, 1]) and noting that the
time integrals in (3.13) are convergent we complete the proof the Theorem
3.1. �

For practical use in latter sections we define the following functional

I(a) :=

∥∥∥∥u(a)(t, 0)− ϕ
∥∥∥∥
L2(0,T )

,(3.14)

where a = (β, α) ∈ [β0, β1]× [α0, α1]. An application of the usual argument
on the compactness of the interval [β0, β1]× [α0, α1] ⊂ R2 yields the follow-
ing existence theorem.

Theorem 3.2. There exists (β?, α?) ∈ [β0, β1]× [α0, α1] such that

∥∥u(β?, α?)(t, 0)− ϕ
∥∥
L2(0,T )

≤
∥∥u(β, α)(t, 0)− ϕ

∥∥
L2(0,T )

.

The following theorem is particularly important in providing the unique-
ness of the solution because it does not use the classical approaches such as
using extra additional data or restricting the set of the admissible solutions.
Instead, it requires only one additional data.

Theorem 3.3. Assume that the condition (2.11) holds. Let u be the solution
of the problem (1.1) and let v be the solution of the following equation with
the same initial and boundary conditions:

(3.15)
∂β̂

∂tβ̂
u(t, x) = −(−∆)α̂/2u(t, x), −1 < x < 1, 0 < t < T.

If u(t, 0) = v(t, 0), 0 < t < T , then β = β̂ and α = α̂.

Proof. By using the explicit formula (2.2), the solutions u(t, x) and v(t, x)
can be written as follows

u(t, x) =

∞∑
n=1

Eβ(−λntβ) < f,ψn > ψn(x),(3.16)
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and

v(t, x) =

∞∑
n=1

Eβ̂(−µntβ̂) < f,ψn > ψn(x).(3.17)

Here λn =
(
λ̄n
)α/2

, µn =
(
λ̄n
)α̂/2

where λ̄n and {ψn}n≥1 are eigenvalues and
eigenvectors of the classical Laplace operator ∆ respectively, i.e, −∆ψn =
λ̄nψn.

Consequently, assuming that u(t, 0) = v(t, 0) we have
(3.18)∑

n≥1
n is odd

Eβ(−λntβ) < f,ψn >=
∑
n≥1

n is odd

Eβ̂(−µntβ̂) < f,ψn >, 0 < t ≤ T.

Since both sides of (3.18) are analytic in Re t > 0 we have

∑
n≥1

n is odd

Eβ(−λntβ) < f,ψn >=
∑
n≥1

n is odd

Eβ̂(−µntβ̂) < f, ψn >, t > 0.

By using (2.5), there exists a constant C9 > 0 such that the following
inequality holds for large t

(3.19)
∣∣∣Eβ(−λntβ)− 1

Γ(1− β)

1

λntβ

∣∣∣ ≤ C9

λ2
nt

2β
.

If we take the sum for odd integer n ≥ 1 using the explicit form of λn we
have

(3.20)
∑
n≥1

n is odd

∣∣∣Eβ(−λntβ)− 1

Γ(1− β)

1

λntβ

∣∣∣ ≤ C10

t2β
.

We add and subtract the term
1

Γ(1− β)λntβ
to the left hand side of (3.18)

and use (3.20) to get the following asymptotic equality

∑
n≥1

n is odd

Eβ(−λntβ) < f,ψn >

=
∑
n≥1

n is odd

< f,ψn >
1

Γ(1− β)

1

λntβ
+O

(∣∣∣ 1

t2β

∣∣∣).(3.21)
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Similarly, arguing for
∑
n≥1

n is odd

Eβ̂(−µntβ̂) < f,ψn >, we have

∑
n≥1

n is odd

Eβ̂(−µntβ̂) < f,ψn >

=
∑
n≥1

n is odd

< f,ψn >
1

Γ(1− β̂)

1

µntβ̂
+O

(∣∣∣ 1

t2β̂

∣∣∣).(3.22)

Therefore from (3.18), (3.21) and (3.22) we have, as t→∞∑
n≥1

n is odd

< f,ψn >
1

Γ(1− β)

1

λntβ
+O

(∣∣∣ 1

t2β

∣∣∣)

=
∑
n≥1

n is odd

< f,ψn >
1

Γ(1− β̂)

1

µntβ̂
+O

(∣∣∣ 1

t2β̂

∣∣∣).(3.23)

For a moment, suppose that β > β̂. Then multiplication of (3.23) by tβ̂

yields that

− tβ̂

tβ

∑
n≥1

n is odd

< f,ψn >
1

Γ(1− β)

1

λn
−O

(∣∣∣ tβ̂
t2β

∣∣∣)

+
∑
n≥1

n is odd

< f,ψn >
1

Γ(1− β̂)

1

µn
+O

(∣∣∣ 1

tβ̂

∣∣∣) = 0.

(3.24)

Letting t→∞ in (3.24) , we deduce that∑
n≥1

n is odd

< f,ψn >
1

Γ(1− β̂)

1

µn
= 0.(3.25)

Since the left-hand side of (3.25) is never zero, by (2.11) and positivity of
the Gamma function on (0,1), we have a contradiction. Similarly, the as-

sumption β̂ > β leads to a contradiction. Therefore, we conclude that β̂ = β.

Now, we prove that α = α̂. Without loss of generality, first assume that
α̂ > α(a similar argument for the case α > α̂ can be presented). By (3.18)

and β̂ = β we have

(3.26)
∑
n≥1

n is odd

Eβ(−λntβ) < f,ψn > =
∑
n≥1

n is odd

Eβ(−µntβ) < f,ψn > .

We take the Laplace transform of Eβ(−λntβ) as follows:

(3.27)

∫ ∞
0

e−ztEβ(−λntβ) dt =
zβ−1

zβ + λn
, Re z > 0.
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Moreover, if we take the Laplace transform of the Mittag-Leffler function
term by term, we obtain

(3.28)

∫ ∞
0

e−ztEβ(−λntβ) dt =
zβ−1

zβ + λn
, Re z > λ

1
β
n .

Since sup
t≥0

∣∣∣Eβ(−λntβ)
∣∣∣ < ∞, by (2.6), we see that

∫ ∞
0

e−ztEβ(−λntβ) dt is

analytic in z for Re z > 0. Thus the analytic continuation yields (3.27) for
Re z > 0. By using (2.6), and Lebesgue’s convergence theorem, we get that

e−tRe zt−β is integrable for t ∈ (0,∞) with fixed z satisfying Re z > 0 and∣∣∣e−tRe z
∑
n≥1

n is odd

< f,ψn > Eβ(−λntβ)
∣∣∣

≤ C0e
−tRe z

( ∑
n≥1

n is odd

< f,ψn >
1

|λn|
1

tβ

)

≤ C0

π2

1

tβ
‖f‖ e−tRe z

∞∑
n=1

1

n2
.

Then, for Re z > 0 we obtain∫ ∞
0

e−zt
∑
n≥1

n is odd

< f,ψn > Eβ(−λntβ) dt

=
∑
n≥1

n is odd

< f,ψn >
zβ−1

zβ + λn
.

(3.29)

Similarly, ∫ ∞
0

e−zt
∑
n≥1

n is odd

< f,ψn > Eβ(−µntβ) dt

=
∑
n≥1

n is odd

< f,ψn >
zβ−1

zβ + µn
.

(3.30)

Then, from (3.26), (3.29) and (3.30) we deduce that

(3.31)
∑
n≥1

n is odd

< f,ψn >

zβ + λn
=

∑
n≥1

n is odd

< f,ψn >

zβ + µn
, Re z > 0,

or equivalently,

(3.32)
∑
n≥1

n is odd

< f, ψn >

ρ+ λn
=

∑
n≥1

n is odd

< f,ψn >

ρ+ µn
, Re ρ > 0.



INVERSE PROBLEM FOR A FRACTIONAL DIFFUSION EQUATION 15

The equality (3.32) implies that

(3.33)
∑
n≥1

n is odd

< f, ψn > (µn − λn)

(ρ+ λn)(ρ+ µn)
= 0, Re ρ > 0.

From (2.11), (3.33) and our assumption α̂ > α, we conclude that

λn = µn, n ≥ 1, n is odd.(3.34)

But, from (3.34) and λn =
(
λ̄n
)α/2

, µn =
(
λ̄n
)α̂/2

we have a contradiction.
Similarly, α > α̂ leads to a contradiction. Therefore, we conclude that
α = α̂.

This completes the proof. �

In [25], the authors proved a uniqueness result in an inverse problem for
a space-time fractional diffusion equation assuming ψn(0) = 1 which is only
true for odd n. The proof there should be modified similar to this one.

4. The inversion algorithm

The inversion algorithm is based on the minimization of the error func-
tional I(a) defined by (3.14) where a = (β, α). We note that the continuity,
hence the existence of the minimum of the functional on a compact set has
been established in the previous section which is not enough to set up an
efficient search algorithm for the minimum. Before developing an algorithm
to find the minimum, we observe a key fact about the functional I(a) which
is differentiability. Now we prove that under certain conditions on f , I(a)
is differentiable with respect to a on a neighborhood of the minimum. This
will enable us to implement a gradient method for the minimization.

Theorem 4.1. The function I(β, α) is differentiable on

(
1

2
, 2

)
× (0, 1) if

|< f, φn >| <
1

n1+2α+θ
for some θ > 0 and ϕ(t) is bounded.

Proof. Without loss of generality hereafter we take T = 1. First we note
that

I(β, α) =

∥∥∥∥u(β, α)(t, 0)− ϕ(t)

∥∥∥∥2

L2(0,1)

=

∫ 1

0
u(β, α)2(t, 0) dt− 2

∫ 1

0
u(β, α)(t, 0)ϕ(t) dt+

∫ 1

0
ϕ2(t) dt.

To show the differentiability of I(β, α), first we need to show the differen-
tiability of the integrands of the first two integrals for each t and continuity
of partial derivatives. This is equivalent to showing the differentiability of
u(β, α)(t, 0) with respect to α and β for each t. Next the derivatives of the
integrands with respect to α and β will be dominated by a function of t
that is in L1[0, 1] so that the result follows from the dominated convergence
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theorem. By the same reasoning, the continuity of the partial derivatives
follows from the continuity of the derivatives of the integrands. Recall that
an analytical expression of u(β, α)(t, x) is already present

u(β, α)(t, x) =

∞∑
n≥1

n is odd

Eβ(−λntβ) < f,ψn > ψn(x).

Since ψn(0) = 1 when n is even and zero when n is odd and λn = (
nπ

2
)α,

it is simplified to

u(β, α)(t, 0) =

∞∑
n≥1

n is odd

Eβ(−(
nπ

2
)αtβ) < f,ψn > .

Now the partial derivative with respect to α is obtained as follows

∂

∂α
u(β, α)(t, 0) =

∞∑
n≥1

n is odd

∂

∂α
(Eβ(−(

nπ

2
)αtβ)) < f,ψn >,

where
∂

∂α
(Eβ(−(

nπ

2
)αtβ)) = −1

2
ln(

nπ

2
)tβE′β(−(

nπ

2
)αtβ).

Putting the expressions above together gives

(4.1)
∂

∂α
u(β, α)(t, 0) = −tβ

∞∑
n≥1

n is odd

α ln(
nπ

2
)E′β(−

(nπ
2

)α
tβ) < f,ψn > .

We note that since Eβ(z) is an entire and completely monotone function,
it is infinitely differentiable on the real line and E′β(−z) is bounded on

(0,∞) by Theorem 2.3. With the fact that tβ is continuous on [0,1] and

the assumption | < f, ψn > | <
1

n1+2α+θ
for some θ > 0, we conclude there

exists a positive number C such that the following inequality holds∣∣∣∣∣∣∣−tβ
∞∑
n≥1

n is odd

α

2
ln(

nπ

2
)E′β(−

(nπ
2

)α
tβ) < f, ψn >

∣∣∣∣∣∣∣ < C
∞∑
n≥1

n is odd

ln(
nπ

2
)

1

n1+θ
<∞.

So
∂

∂α
u(β, α)(t, 0) exists for each t and bounded on [0, 1]. Since u(β, α)(t, 0)

and ψ is bounded on [0,1], we conclude the differentiability of I(β, α) with
respect to α. The continuity of the partial derivative of I with respect to α
follows from the continuity of the expression (4.1) for each α and β.
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The partial derivative with respect to β is obtained as follows

∂

∂β
u(β, α)(t, 0) =

∞∑
n≥1

n is odd

∂

∂β
(Eβ(−(

nπ

2
)αtβ)) < f,ψn >,

where

∂

∂β
(Eβ

(
(−nπ

2
)αtβ

)
) =

∂

∂β

( ∞∑
k=0

(
−(nπ2 )αtβ

)k
Γ(1 + βk)

)

=
∞∑
k=0

(
k
(
(−nπ

2 )αtβ
)

ln t
(
(−nπ

2 )αtβ
)k−1

Γ(1 + βk)
−
kΓ′(1 + βk)

(
(−nπ

2 )αtβ
)k

Γ(1 + βk)2

)

=
(

(−nπ
2

)αtβ ln t
)
E′β

(
−(
nπ

2
)αtβ

)
︸ ︷︷ ︸

:=A(t)

−
∞∑
k=0

kψ0(1 + βk)
(
−(nπ2 )αtβ

)k
Γ(1 + βk)︸ ︷︷ ︸
:=B(t)

,

where ψ0(z) =
Γ′(z)

Γ(z)
, i.e, the digamma function. In the expression above

A(t) is defined for every t ∈ (0, 1] because Eβ(z) is differentiable everywhere
and B(t) is defined for every t ∈ [0, 1] because the radius of convergence is
infinity. On the other hand, since E′β(−z) is bounded on (0,∞) by Theorem

2.3, |A(t)| < M(
nπ

2
)αtβ| ln t| for some M > 0. Since ψ0(1+βk) ≈ ln(1+βk)

and k ln(1+β) ≤ k ln(1+βk) ≤ k(k−1) for sufficiently large k , B(t) remains

between some multiples of nαtβE′β(−(
nπ

2
)αtβ) and n2αt2βE′′β(−(

nπ

2
)αtβ)

which means B(t) is bounded, i.e., |B(t)| < Nn2α for some N > 0 on
[0, 1]. Thus

∣∣∣∣ ∂∂βu(β, α)(t, 0)

∣∣∣∣ < ∞∑
n≥1

n is odd

∣∣∣∣ ∂∂β (Eβ(−(
nπ

2
)αtβ))

∣∣∣∣ |< f,ψn >|

<

∞∑
n≥1

n is odd

|A(t)|+ |B(t)|
n1+2α+θ

<

∞∑
n≥1

n is odd

(
M
(
nπ
2

)α
tβ| ln t|+Nn2α

)
n1+2α+θ

< C1t
β| ln t|+ C2 for some C1 and C2

< C1t| ln t|+ C2,

which is integrable on [0, 1]. Now the boundedness of u(β, α)(t, 0) and ϕ(t)
on [0,1] gives the differentiability. The continuity of the partial derivative
with respect to β follows from the continuity of A(t) and B(t) with respect
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to β for each t. �

For the ill-posedness of the inverse problem, Tikhonov regularization is
applied hence a regularization term with a regularization parameter λ is
added to I(a). Now we focus on minimizing the following function

F (a) =

∥∥∥∥u(a)(t, 0)− ϕ(t)

∥∥∥∥2

L2(0,1)

+ λ ‖a‖2E ,

where ‖a‖E denotes the Euclidean norm of a.
We proceed the minimization of F (a) by the steepest descent method

which will utilize the gradient of F . In this method, the algorithm starts with
an initial point b0, then the point providing the minimum is approximated
by the points

bi+1 = bi +4bi,
where 4bi is the feasible direction which minimizes F (bi +4b). This proce-
dure is repeated until the algorithm gets sufficiently close to the minimum
point. Since the minimum point is not known, one of the following stop cri-
teria will be used: ‖4bi‖E < ε or |F (bi+1)− F (bi)| < ε or a certain number
of iterations.

We remark some cases at this point. The first case is that there might be
several local minima, that is, the algorithm does not guarantee getting the
global minimum point in the given region. In this case, the initial point b0
becomes important. Another case is that the global minimum might be on
the boundary of [β0, β1]×[α0, α1] which might be a problem in implementing
the gradient method. In our example we will take several initial values
around the global minimum.

In the minimization of F (bi+4b), we use the following estimate on u(bi+
4b)(t, 0)

u(bi +4b)(t, 0) ' u(bi)(t, 0) +∇u(bi)(t, 0) · 4b,
where ∇ denotes the gradient of u(b)(t, 0) with respect to b. F (bi + 4b)
becomes

F (bi +4b) = ‖∇u(bi)(t, 0) · 4b+ u(bi)(t, 0)− ϕ(t)‖22 + λ ‖4b‖2E .

In numerical calculations, we note that ‖·‖2 can be discretized by using a
finite number of points in [0, T ], i.e., for t1 = 0 < t2 < · · · < tq = T , hence
F (bi +4b) has its new form as

(4.2) E(4b) '
q∑

k=1

(u(bi, tk, 0) +∇u(bi, tk, 0) · 4b− ϕ(tk))
2 + λ ‖4b‖2E .

Now the minimization of this problem is a least squares problem whose
solution leads to the following normal equation (see [7])
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(λI +ATA)4b = ATK,

where

A =
[
∇u(bi)(t1, 0)T · · · ∇u(bi)(tq, 0)T

]
,

and

K = [u(bi)(t1, 0)− ϕ(t1) · · ·u(bi)(tq, 0)− ϕ(tq)]
T .

Now the optimal direction is found by

(4.3) 4b = (λI +ATA)−1ATK.

In forming A, the computation (or estimation ) of sth component of the
vector ∇u(bi)(tk, 0) can be achieved by

(4.4)
u(bi + hes)(tk, 0)− u(bi + hes)(tk, 0)

h
,

where es is the standard unit vector whose sth component is 1 and h is the
differential step. Now we give the algorithm.

Algorithm:

Step 1: Set b0, λ and a stopping criterion k or ε ( stop when the
iteration number is equal to k or size of ‖4bi‖E ≤ ε).

Step 2: Calculate 4bi using (4.3) and set bi+1 = bi +4bi.
Step 3: Stop when the criterion is achieved.

5. Numerical examples with noise free and noisy data

In this section we examine the algorithm with two problems. Both prob-
lems are considered in the following form where (β, α) is to be found:


∂β

∂tβ
u(t, x) = −(−∆)α/2u(t, x), −1 < x < 1, 0 < t < 1,

u(t,−1) = u(t, 1) = 0, 0 < t < 1,
u(0, x) = f(x), −1 < x < 1,
u(t, 0) = ϕ(t).

(5.1)

In both examples, the direct problem is solved for a = (β, α) = (0.5, 1)
and the given f(x) using (2.2) then ϕ(t) is obtained numerically. Then the
inverse problem with the obtained ϕ(t) is solved via the algorithm to get
a = (β, α) = (0.5, 1) for different (β, α) initial points.

The problems are solved first using noise-free data then noisy data and
the results are established for both cases. We form the noisy data in the
following way

ϕ̃ = ϕ+ ξ(t),

where ξ(t) = θz(t) and z(t) is a random number between [-1,1] and θ is noise
level. For the noisy data, the optimal regularization parameters are sought
and the results are established.
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We recall that the solution of the direct problem is given

u(t, x) =

∞∑
n=1

< f,ψn > Eβ(−λntβ)ψn(x),

where λn = (
nπ

2
)α with ψn(x) = sin

(nπx
2

)
when n is even and ψn(x) =

cos
(nπx

2

)
when n is odd, and

Eβ(z) :=

∞∑
k=0

zk

Γ(1 + βk)
.

Due to the fact that the solution of the direct problem involves infinite
sums and requires the discretization of an integral functional I(a), there is
a large list of parameters used in the computations. These parameters and
their values in our computations are listed below:

• The sensitivity of Mittag-Leffler function: 10−6 is taken.
• Summing index of u(t, x): r = 10 is taken for the first example and
r = 20, 50, 100, 150 are examined for the second example.
• The initial points for (β, α): are chosen to be the points of the

form (0.5, 1) + m(Re(ei
kπ
8 ), Im(ei

kπ
8 )) for m = 0.2, 0.3 and 0.4 and

k = 1, · · · , 8. Thus the algorithm is examined with 24 different
points around (0.5, 1).
• The number of ti’s in [0, 1] for in (4.2): q = 10 is taken.
• Stepsize h in (4.4): h = 0.1 is taken.
• Stop criterion: ‖4bi‖ < 0.01 in (4.3) or 100 iterations.
• Regularization parameters λ: are obtained for the perturbed data

in both examples heuristically. In both examples, the best regular-
ization parameter λ is chosen among multiples of 0.01 in [0,1] by
comparing the relative error for each.
• Noise level θ: is taken as 0.1 for both examples.

The relative error for each result corresponding to an initial point is com-
puted as the following

‖u(β, α)(t, x)− u(1, 0.5)(t, x)‖∞
‖u(1, 0.5)(t, x)‖∞

,

where (β, α) is the corresponding result for the initial point and ‖·‖∞ is
taken to be the maximum value of the absolute value of u(t, x) at 20000
points formed by the Cartesian product of 200 uniformly distributed points
on [−1, 1] and 100 uniformly distributed points on [0, 1] for x and t respec-
tively.

Example 1. f(x) = 0.5 cos(2.5πx) + sin(πx). Note that this choice of
f(x) allows < f,ψn >= 0 except n = 2 and 5. For this reason, the summing
index has been chosen to be r = 10 for this example. See Table 1 for the
noise-free data and Table 2 for the noisy data. In Table 3, the initial point
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Table 1. The results obtained from 24 different points
around β = 0.4, α = 1 using the noise-free data.

initial values of (α, β) results with r = 10 initial values of (α, β) results with r = 10
1.2000 0.4000 0.9995 0.4003 1.3000 0.4000 1.0000 0.4006
1.1732 0.5000 0.9994 0.3999 1.2598 0.5500 0.9992 0.3996
1.1000 0.5732 1.0001 0.4007 1.1500 0.6598 0.9996 0.4001
1.0000 0.6000 0.9996 0.4003 1.0000 0.7000 0.9996 0.4001
0.9000 0.5732 0.9996 0.4004 0.8500 0.6598 0.9996 0.4001
0.8268 0.5000 0.9995 0.4002 0.7402 0.5500 0.9996 0.4006
0.8000 0.4000 0.9995 0.4000 0.7000 0.4000 0.9994 0.3999
0.8268 0.3000 0.9996 0.4000 0.7402 0.2500 0.9994 0.3998
0.9000 0.2268 0.9997 0.4000 0.8500 0.1402 0.9996 0.4001
1.0000 0.2000 0.9997 0.4001 1.0000 0.1000 0.9998 0.4000
1.1000 0.2268 0.9996 0.4004 1.1500 0.1402 0.9996 0.4001
1.1732 0.3000 0.9996 0.4001 1.2598 0.2500 0.9996 0.4005

Table 2. The results with relative errors obtained from 24
points around β = 0.4, α = 1 using the noisy data with error
level θ = 0.1

initial values of (α, β) results with r = 10 relative error

1.2000 0.4000 0.8677 0.6834 0.2984
1.1732 0.5000 0.8675 0.6826 0.2979
1.1000 0.5732 0.8679 0.6843 0.2989
1.0000 0.6000 0.8675 0.6829 0.2981
0.9000 0.5732 0.8683 0.6826 0.2977
0.8268 0.5000 0.8668 0.6794 0.2960
0.8000 0.4000 0.8664 0.6801 0.2966
0.8268 0.3000 0.8678 0.6842 0.2989
0.9000 0.2268 0.8676 0.6831 0.2982
1.0000 0.2000 0.8677 0.6839 0.2987
1.1000 0.2268 0.8678 0.6846 0.2991
1.1732 0.3000 0.8677 0.6838 0.2987
1.3000 0.4000 0.8670 0.6795 0.2960
1.2598 0.5500 0.8674 0.6824 0.2978
1.1500 0.6598 0.8673 0.6791 0.2957
1.0000 0.7000 0.8674 0.6823 0.2977
0.8500 0.6598 0.8675 0.6818 0.2974
0.7402 0.5500 0.8676 0.6818 0.2974
0.7000 0.4000 0.8677 0.6817 0.2973
0.7402 0.2500 0.8678 0.6820 0.2975
0.8500 0.1402 0.8677 0.6840 0.2988
1.0000 0.1000 0.8677 0.6835 0.2984
1.1500 0.1402 0.8680 0.6837 0.2986
1.2598 0.2500 0.8676 0.6819 0.2974

with the highest relative error in Table 2 is used for finding the best regular-
ization parameter. The best regularization is found to be λ = 0.05 and the
associated relative error is given in Table 3. Table 3 shows how important
the regularization parameter is in fixing the results for the noisy data.
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Table 3. The initial point with the highest relative error
(See Table 2) is retested with regularization parameter λ =
1.5

initial values of (α, β) results with λ = 0 relative error results with λ = 1.5 relative error
1.1000 0.2268 0.8678 0.6846 0.2991 0.9217 0.3642 0.0194

Table 4. The results for 24 points around β = 0.4, α = 1
for the noise-free data for different choices of summing indices

initial values of (α, β) r = 20 r = 50 r = 100 r = 150
1.2000 0.4000 0.9909 0.4016 0.9909 0.4016 0.9999 0.4000 1.0249 0.3958
1.1732 0.5000 0.9909 0.4016 0.9909 0.4016 1.0000 0.4000 1.0249 0.3958
1.1000 0.5732 0.9909 0.4016 0.9909 0.4016 1.0000 0.4000 1.0250 0.3958
1.0000 0.6000 0.9909 0.4016 0.9910 0.4016 1.0000 0.4001 1.0250 0.3958
0.9000 0.5732 0.9909 0.4016 0.9910 0.4016 1.0000 0.4001 1.0250 0.3958
0.8268 0.5000 0.9909 0.4016 0.9909 0.4016 1.0000 0.4000 1.0249 0.3958
0.8000 0.4000 0.9912 0.4015 0.9912 0.4015 0.9999 0.4000 1.0249 0.3958
0.8268 0.3000 0.9910 0.4013 0.9910 0.4013 1.0002 0.3997 1.0249 0.3957
0.9000 0.2268 0.9907 0.4015 0.9907 0.4015 0.9997 0.3999 1.0249 0.3955
1.0000 0.2000 0.9909 0.4019 0.9909 0.4019 0.9999 0.4003 1.0247 0.3959
1.1000 0.2268 0.9909 0.4016 0.9909 0.4016 1.0000 0.4000 1.0250 0.3958
1.1732 0.3000 0.9909 0.4016 0.9909 0.4016 1.0000 0.4000 1.0249 0.3958
1.3000 0.4000 0.9909 0.4015 0.9909 0.4015 0.9999 0.3999 1.0249 0.3958
1.2598 0.5500 0.9909 0.4015 0.9909 0.4015 0.9999 0.3999 1.0249 0.3958
1.1500 0.6598 0.9909 0.4016 0.9909 0.4016 1.0000 0.4001 1.0249 0.3958
1.0000 0.7000 0.9909 0.4017 0.9910 0.4017 1.0000 0.4001 1.0251 0.3959
0.8500 0.6598 0.9909 0.4017 0.9909 0.4017 1.0000 0.4001 1.0250 0.3959
0.7402 0.5500 0.9909 0.4016 0.9909 0.4016 1.0000 0.4001 1.0249 0.3959
0.7000 0.4000 0.9909 0.4015 0.9909 0.4015 0.9999 0.4000 1.0249 0.3958
0.7402 0.2500 0.9909 0.4015 0.9909 0.4015 0.9999 0.3999 1.0249 0.3957
0.8500 0.1402 0.9910 0.4016 0.9910 0.4016 1.0000 0.4000 1.0250 0.3956
1.0000 0.1000 0.9909 0.4016 0.9910 0.4016 1.0000 0.4000 1.0249 0.3959
1.1500 0.1402 0.9910 0.4017 0.9910 0.4017 1.0000 0.4001 1.0251 0.3959
1.2598 0.2500 0.9909 0.4016 0.9909 0.4016 0.9999 0.4000 1.0249 0.3958

Example 2. f(x) = e−10x2 . Note that not all < f,ϕn > are strictly
positive, however < f,ϕ0 > is strictly positive and it dominates the other
values of < f,ϕn >. The algorithm is examined for r = 20, 50, 100 and
150. See Table 4 for the noise-free data and Table 5 for the noisy data. In
examining the noisy data, r = 100 is used because of its relatively high pre-
cision in Table 4. In Table 6 the initial point with the highest relative error
in Table 5 is used for finding the best regularization parameter. The best
regularization parameter is found to be λ = 0.33 and the associated relative
error is given in Table 3.
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Table 5. The results with relative errors obtained from 24
points around β = 0.4, α = 1 using the noisy data with error
level θ = 0.1

initial values of (α, β) results with r = 100 relative error
1.2000 0.4000 0.9448 0.5101 0.0970
1.1732 0.5000 0.9448 0.5100 0.0970
1.1000 0.5732 0.9448 0.5100 0.0970
1.0000 0.6000 0.9450 0.5102 0.0970
0.9000 0.5732 0.9448 0.5102 0.0971
0.8268 0.5000 0.9449 0.5100 0.0969
0.8000 0.4000 0.9449 0.5098 0.0968
0.8268 0.3000 0.9447 0.5100 0.0970
0.9000 0.2268 0.9449 0.5101 0.0970
1.0000 0.2000 0.9448 0.5101 0.0970
1.1000 0.2268 0.9448 0.5101 0.0971
1.1732 0.3000 0.9448 0.5101 0.0970
1.3000 0.4000 0.9448 0.5101 0.0970
1.2598 0.5500 0.9448 0.5100 0.0970
1.1500 0.6598 0.9448 0.5100 0.0970
1.0000 0.7000 0.9449 0.5101 0.0970
0.8500 0.6598 0.9448 0.5101 0.0970
0.7402 0.5500 0.9448 0.5100 0.0970
0.7000 0.4000 0.9448 0.5100 0.0970
0.7402 0.2500 0.9448 0.5100 0.0970
0.8500 0.1402 0.9449 0.5101 0.0970
1.0000 0.1000 0.9448 0.5101 0.0970
1.1500 0.1402 0.9449 0.5103 0.0972
1.2598 0.2500 0.9448 0.5102 0.0971

Table 6. The initial point with the highest relative error
(See Table 5) is retested with the regularization parameter
λ = 4.7

initial values of (α, β) results with λ = 0 relative error result with λ = 4.7 relative error
1.1500 0.1402 0.9449 0.5103 0.0972 0.9835 0.3951 0.0030

From the computations above, we observe two important facts. The first
one is that in the different neighborhoods of the correct value, the algorithm
works well and this suggests that the functional I(a) given by (3.14) is
differentiable in some neighborhood of the mimimum. That conclusion is
proved by Theorem 4.1 in Section 4 . We note that the requirement imposed
on < f, φn > by Theorem 4.1 is roughly equivalent to the differentiability of
f(x) to some extent because < f, φn > is roughly equivalent to f̂(n) where

f̂ is the Fourier transform of f .
The other fact is that when the algorithm is applied to solve the inverse

problems of the given type in this article for any f(x), one should be careful
about the summing index r of the direct problem for the requirement <
f, φn > is strictly positive for every n is not satisfied for all functions and
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this yields considerable differences in different choices of r as seen in Table
4.

6. Concluding Remarks

We have studied a nonlocal inverse source problem for the space-time

fractional diffusion
∂β

∂tβ
u(t, x) = −(−∆)α/2u(t, x). After defining the input-

output mapping for the inverse problem, we have proved that the map-
ping is continuous. By using continuity of the mapping and compactness
of the interval [β0, β1] × [α0, α1], we have concluded that the minimiza-
tion problem has a solution. The uniqueness of the solution has been
proved for a specific class of the initial functions f(x) using eigenfunction
expansion of the solution of the direct problem. For the numerical solu-
tion of the inverse problem, a numerical method based on discretization of
the minimization problem, steepest descent method and least squares ap-
proach is proposed. The numerical algorithm determines the unknowns β
and α simultaneously. In the future, we plan to study an inverse source
problem for the nonhomogeneous space-time fractional diffusion equation
∂β

∂tβ
u(t, x) = −(−∆)α/2u(t, x) + F (t, x). After establishing existence and

uniqueness of the solution of the inverse source problem theoretically, we
will propose a numerical algorithm to determine F (t, x). We also plan to
determine simultaneously F (t, x) and one of the parameters β or α. These
are subjects of the future studies by the authors of this paper.
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