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Abstract

This paper is concerned with the biological neuron model of Morris-
Lecar system of equations [17]. We prove the existence and uniqueness
of strong solutions. In addition, we prove the continuous dependence of
solutions to the leak conductance parameter.

1 Introduction

In this paper we are concerned with the following nonlinear system of Morris-
Lecar equations

dv

dt
= ∆v − f(v, n), in Ω× (0,∞), (1.1)

dn

dt
= φ

n∞(v)− n
τ∞(v)

, in Ω× (0,∞), (1.2)

v(x, 0) = v0(x), n(x, 0) = n0(x), in Ω, (1.3)

v(x, t) = 0, n(x, t) = 0, in ∂Ω× (0,∞), (1.4)

where v0 and n0 are given functions and Ω ⊂ Rn, n ≤ 3, is a bounded domain
with sufficiently smooth boundary ∂Ω. Here, v(x, t) and n(x, t) denote the
membrane potential and fraction of open potassium channels at the position x
at time t, respectively. The function f(v, n) is given by

f(v, n) = gL(v − EL)− gKn(v − EK)− gCam∞(v)(v − ECa) + I, (1.5)

where gL, gCa and gK are maximal leak, Ca++ and K+ conductances with
values gL = 2µS, gCa = 4µS and gK = 8µS, respectively. The reversal po-
tential values for leak, Ca++ and K+ currents are given as EL = −60mV ,
ECa = 120mV and EK = −84mV , respectively [8]. Without loss of general-
ity, we assume that the parameter φ = 1, where φ is the kinetic constant of
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the potassium gating variable n. I is the applied current. Potential dependent
functions modulating instant activation of Ca++ and K+ are given as

m∞(v) =
1

2
[1 + tanh((v + 1.2)/18)] ,

n∞(v) =
1

2
[1 + tanh((v − 12)/17.4)] ,

τ∞(v) = 1/ cosh ((v − 12)/(17.4)) .

The paper [8] can be refereed to for further information regarding the parame-
ters and the entire model derivation and background.

Morris-Lecar(ML) equations describe transmission of electrical pulses through
neuron axon in a reduced manner; that is, it can be considered as a simplified
version of the more general model of Hodgkin-Huxley, [13]. It still exhibits many
important features of the full model. The parameters that are used in the model
presented here display saddle-node bifurcation with respect to the parameter I
in the absence of the diffusion term ∆v. However, results obtained in this work
hold for other parameter sets that display other bifurcation types (Hopf and
homoclinic) as well.

There has been much interest lately in the study of the question of continu-
ous dependence of initial boundary value problems to various model parameters.
Such kind of dependency is usually described as structural stability problem (
see e.g. [1], [2], [3], [4] and [25]). In [1] and [4] authors considered continuous de-
pendency of solutions to the diffusion coefficient of FithzHugh Nagumo (FHN)
model (see [8] and [10] ).

In the mathematical analysis of neurons, the so called FHN model has been
widely used (see e.g., [7], [15], [16] and [18]). This model is obtained via math-
ematical abstraction of the biologically realistic ML model. FHN model, does
not include any of the biological parameters except diffusion constant and ap-
plied current and, it has linearity in the second variable. These facts together
make the FHN model available for mathematical analysis. In this regard, many
papers have been published regarding the mathematical analysis of the FHN
model. Importantly, many of the single cell dependency studies on the FHN
model deal with the bifurcation behavior (e.g., [11] and [14]), dependence on
the diffusion constant (e.g., [1] and [20]) and reaction to noisy input (e.g., [19],
[26] and [28]).

On the other hand, the Morris Lecar model which has biological parameters
and higher non-linearity has its own advantages. First, obtained results can
easily be evaluated in terms of the biological parameters in the model. Second,
many of the functions and variables obey biologically set bounds. Most impor-
tant of these are gating variables and functions, namely, n, m∞, n∞ and τ∞
(see Figure 1). The functions m∞(v) and n∞(v) denote the fraction of open
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sodium and potassium channels, respectively, when cell potential is fixed at v.
In this case, their value remains between 0 and 1 (See Figure 1). The rate func-
tion, τ∞(v), that controls the speed of potassium influx to the cell has a strict
lower bound (see Figure 1). Moreover, the fact that n remains between 0 and 1
can easily be justified using the mentioned bounds and simple ODE arguments.
Figure 1 shows the behavior of these gating functions with respect to the cell
potential v.

In this work, we take advantage of the both of the above facts regarding
this biologically realistic model. First, by using the mathematical bounds of
the ML model mentioned above, we establish existence and uniqueness of the
strong solutions. Second, we conclude the continuous dependence of solutions
to passive leak conductance parameters. This type of dependency analysis on
model parameters is usually referred to as structural stability [27].

Similar equations have been studied numerically recently in the literature.
We mention a few of them here. In [6], two pseudospectral methods based on
Fourier series and rational Chebyshev functions for solving the Nagumo equa-
tion are presented. In [12], the HPM, VIM and ADM are applied to solve
Rosenau-Hyman equation arising in the pattern formation in liquid drops. In
[5], a meshless technique based on the local radial basis functions collocation
method is introduced for solving parabolic-parabolic Patlak-KellerSegel chemo-
taxis model. In [22], a system of two nonlinear integro-differential equations
which arises in biology is considered and the well-known VIM is implemented.
In [23], the finite volume spectral element method is introduced to solve Turing
models which arise in the biological pattern formation.

We now introduce the notations and inequalities used throughout the text
together with the definition of the strong solution. Lp(Ω) denotes the Lebesgue
space of functions f satisfying

∫
Ω
|f |p dx <∞, Hm(Ω) denotes the usual Sobolev

space of distributions with derivatives of order lower than m are in L2(Ω). The
space Hm

0 denotes the closure of C∞
0 in Hm(Ω). Throughout the paper || · ||

stands for the usual L2(Ω) norm. Young’s and Sobolev inequalities are given
as:

Young’s Inequality:

ab ≤ a2

2ε
+
b2ε

2
for all a, b, ε > 0. (1.6)

Sobolev’s Inequality (Poincaré Form ):

||u||2 ≤ c0||∇u||2 for all u ∈ H1
0 (Ω), (1.7)

where c0 > 0 is the reciprocal of the minimal eigenvalue of the negative Lapla-
cian that depends on Ω.
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Figure 1: Gating functions of the Morris-Lecar model. The functions m∞ and
n∞ remains between 0 and 1 for all potential levels. The kinetic function τ∞ of
the variable n has a strict lower bound.

Definition 1.1 A pair of functions (v(t), n(t)) is called a strong solution of the
problem (1.1)-(1.4) if

v ∈ L2([0, T ];H2(Ω)) ∩ C([0, T ];H1
0 (Ω)) ∩ L2(Ω× (0, T )),

n ∈ C([0, T ];H1
0 (Ω)),

and the equations (1.1)− (1.2) are satisfied in the sense of distributions.

2 Existence of strong solutions

In the following theorem we show the existence of the strong solution to the
problem given in (1.1)− (1.4) and obtain some uniform estimates for the solu-
tions. We first note that the functions m∞, n∞ and τ∞ and n(t) satisfy the
following inequalities, respectively. Below we denote by v(t) and n(t) any so-
lution of (1.1)-(1.4), which are actually functions of x also. When there is no
ambiguity, we also drop the variable t and write for example vN to denote a
function of x and t.

m∞(v(t)) ≤ 1, n∞(v(t)) ≤ 1, τ1 < τ∞(v(t)) < τ2 and 0 ≤ n(t) ≤ cn, (2.1)

for some positive constants τ1, τ2 and cn.

Theorem 2.1 Suppose that v0, n0 ∈ H1
0 (Ω). Then the initial boundary value

problem (1.1) − (1.4) admits a unique strong solution (v(t), n(t)). In addition,
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the following uniform estimates are satisfied for some constant C > 0.

‖∇v(t)‖, ‖∇n(t)‖,
∫ t

0

‖∇v(τ)‖2 dτ,∫ t

0

‖∇n(τ)‖2 dτ,
∫ t

0

‖∆v(τ)‖2 dτ ≤ C, ∀t ∈ R+.

(2.2)

Proof of Theorem 2.1 First, let us note that we have (2.1) and gK > 0
and gCa > 0. Using the Galerkin method, see e.g. [9, 21], let us construct
approximate solutions of (1.1). Let {φj}∞j=1 be a basis of H1

0 (Ω) consisting of
the eigenfunctions of the Dirichlet problem{

−∆φj = λjφj , in Ω,

φj = 0, on ∂Ω, j = 1, 2, · · · .
(2.3)

There exists a sequence {αN}∞N=1 such that

N∑
k=1

αkφk → v0, in H1
0 (Ω) as N →∞. (2.4)

We define the approximate solution vN (t) of the equation (1.1) in the form

vN (t) =

N∑
k=1

ck(t)φk(x), (2.5)

where Ck(t) are determined by the system of ordinary differential equations

(
N∑
k=1

c′k(t)φk, φj

)
+

(
N∑
k=1

ck(t)∇φk,∇φj

)

=

(
f

(
N∑
k=1

ck(t)φk, n(t)

)
, φj

)
, j = 1, 2, · · · , N,

(2.6)

with initial data

cNj(0) = αj , j = 1, · · · , N. (2.7)

Since det((φj , φk)) 6= 0 and the nonlinear function f is continuous, by the Peano
existence theorem, there exists at least one local solution to (2.6)-(2.7) in the
interval [0, T ). Hence, this allows us to construct the approximate solution
vN (t). Multiplying the equation (2.6) by the function cj(t), summing from
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j = 1 to N we have

d

dt

1

2
‖vN (t)‖2 + ‖∇vN (t)‖2

= −gL
∫

Ω

vN (t)2 dx+ gLEL

∫
Ω

vN (t) dx

− gK
∫

Ω

n(t)vN (t)2 dx+ gKEK

∫
Ω

n(t)vN (t) dx

− gCa

∫
Ω

m∞(vN (t))vN (t)2 dx

+ gCa
ECa

∫
Ω

m∞(vN (t))vN (t) dx

+ I

∫
Ω

vN (t) dx.

(2.8)

Applying Sobolev, Hölder and Young inequalities and using the properties of
the functions m∞, v and positivity of the corresponding constants we get

d

dt

1

2
‖vN (t)‖2 ≤

(
−c12 +

ε1

2

)
‖vN (t)‖2 +

1

2ε1
K1

2|Ω|, (2.9)

where
K1 := gLEL + cn|gKEK |+ gCa

ECa
+ I,

and

|Ω| :=
∫

Ω

dx.

This implies, by choosing ε1 small enough, that

‖vN (t)‖2 ≤ C1, ∀t ∈ [0, T ), (2.10)

where C1 depends on ‖v0‖ and is independent of N and t. Hence, we can extend
the approximate solution to the interval [0,∞) and

‖vN (t)‖2 +

∫ t

0

‖vN (t)‖2H1(Ω) ds ≤ c, (2.11)

for some constant c > 0 that is independent of N and t.

Thus, it follows that the sequence {vN}∞N=1 is bounded in L∞(0, T ;L2(Ω))∩
L2(0, T ;H1

0 (Ω)). Applying the compact embedding theorem (see Cor. 4 in [24])
we obtain that the sequence {vN}∞N=1 is precompact in L2(0, T ;L2(Ω)). As a
consequence, there exists a subsequence of {vN}∞N=1(still denoted by {vN}∞N=1)
and a function v ∈ L∞(0, T ;H1

0 (Ω)) such that{
vN → v weakly star in L∞(0, T ;H1

0 (Ω)),

vN → v a.e. in Ω× (0, T ).
(2.12)
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Thus, using the properties(boundedness) of the functions m∞, n and the con-
stants(so that quadratic terms converge), we can pass to the limit in (2.6) and
obtain

(vt, φj) + (∇v,∇φj) = (f(v, n), φj) in L1(0, T ), (2.13)

for j = 1, 2, · · · , . Since {φj}∞j=1 is a basis in H1
0 (Ω) ∩ L∞(Ω), by density of

H1
0 (Ω) ∩ L2(Ω) in H1

0 (Ω) ∩ L∞(Ω) in the topology endowed with the strong
topology of H1

0 (Ω) and weakly star topology of L∞(Ω) for all v ∈ H1
0 (Ω)∩L∞(Ω)

there exists a sequence {αNj}kNj=1 such that

kN∑
j=1

αNjφj → v in H1
0 (Ω), as N →∞,

and

sup
N

∥∥∥∥ kN∑
j=1

αNjφj

∥∥∥∥
C(Ω̄)

<∞,

which together with (2.13), yields that

(vt, w) + (∇v,∇w) = (f(v, n), w) in L1(0, T ), (2.14)

for all w ∈ H1
0 (Ω) ∩ L∞(Ω). From the estimates above it follows that

vN → v weakly in C([0, T ];H1
0 (Ω))

and in particular
vN (0)→ v(0) weakly in H1

0 (Ω),

which, together with (2.4), yields that v(0) = v0. Also

d

dt
(vN , φj)→

d

dt
(v, φj) weakly in L1(0, T )

for j = 1, 2, · · · , . Applying compact embedding theorems, by (2.12) we have

vN → v strongly in C([0, T ];L2(Ω)). (2.15)

Hence, passing to the limit in (2.6) and taking into account the weak lower
semicontinuity of the norm leads to the weak solution. Also,

v ∈ C([0, T ];H1
0 (Ω)).

Since n solves an ordinary differential equation, the existence, uniqueness
together with the regularity of solutions follow easily by the properties of the
functions in the equation. We omit the details for the existence and uniqueness
but provide below some estimates for the regularity.

For the higher regularity of the weak solution we need further a priori es-
timates. The following estimates are formal, which can be justified using the
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above procedure via the Galerkin approximation. For the sake of brevity, since
the idea is exactly the same as above, we only present the formal calculations.

We take the inner product of the equation (1.1) with −∆v(t) and obtain

1

2

d

dt
‖∇v(t)‖2 = −

∫
Ω

|∆v(t)|2 dx+ gL

∫
Ω

∆v(t)(v(t)− EL) dx

+ gK

∫
Ω

∆v(t)n(t)(v(t)− EK) dx

+ gCa

∫
Ω

m∞(v(t))∆v(t)(v(t)− ECa) dx

− I
∫

Ω

∆v(t) dx.

(2.16)

For the second, third and fourth terms on the right hand side of (2.16), we have
the following useful estimates

gL

∫
Ω

∆v(t)(v(t)− EL) dx = −gL
∫

Ω

|∇v(t)|2 dx = −gL‖∇v(t)‖2, (2.17)

gK

∫
Ω

∆v(t)n(t)(v(t)− EK) dx ≤ gKcn‖∆v(t)‖‖v(t)− EK‖

≤ gKcnN1‖∆v(t)‖,
(2.18)

gCa

∫
Ω

m∞(v(t))∆v(t)(v(t)− ECa) dx ≤ gCa‖∆v(t)‖‖v(t)− ECa‖

≤ gCaN2‖∆v(t)‖,
(2.19)

where we used n(t) ≤ cn, m∞(v(t)) ≤ 1, ‖v(t)−EK‖ < N1 and ‖v(t)−ECa‖ <
N2, for some N1, N2 > 0.

Using the estimates (2.17), (2.18) and (2.19) in (2.16) we have

1

2

d

dt
‖∇v(t)‖2 ≤ −‖∆v(t)‖2 − gL‖∇v(t)‖2

+ (gKcnN1 + gCaN2 + I|Ω| 12 )‖∆v(t)‖
= −‖∆v(t)‖2 − gL‖∇v(t)‖2 +K2‖∆v(t)‖,

(2.20)

where K2 = gKcnN1 + gCaN2 + I|Ω| 12 . By employing the Young’s inequality
with ε2 in (2.20), we get

1

2

d

dt
‖∇v(t)‖2 ≤ −gL‖∇v(t)‖2 +

(
−1 +

ε2
2

)
‖∆v(t)‖2 +

1

2ε2
K2

2

≤ −gL‖∇v(t)‖2 +
1

2ε2
K2

2 ,

(2.21)
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where ε2 is chosen in such a way that −1 + ε2
2 ≤ 0. Using (2.21) and integrating

(2.20) with respect to t, we obtain

‖∇v(t)‖ < C and

∫ t

0

‖∆v(τ)‖2dτ < C ∀t ∈ R+. (2.22)

Next, we take the inner product of the equation (1.2) in L2(Ω) with −∆n(t)
to get

1

2

d

dt
‖∇n(t)‖2 = −

∫
Ω

n∞(v(t))

τ∞(v(t))
∆n(t) dx+

∫
Ω

n(t)∆n(t)

τ∞(v(t))
dx

=

∫
Ω

(n
′

∞(v(t))τ∞(v(t))− n∞(v(t))τ
′

∞(v(t)))

τ2
∞(v(t))

∇v(t) · ∇n(t) dx

−
∫

Ω

(
|∇n(t)|2

τ∞(v(t))
− τ

′

∞(v(t))n(t)∇n(t) · ∇v(t)

τ2
∞(v(t))

)
dx

≤ sup

(
τ

′

∞(v(t))n(t)

τ2
∞(v(t))

)∫
Ω

∇n(t) · ∇v(t) dx− 1

τ2
‖∇n(t)‖2

+
sup(n

′

∞(v(t))τ∞(v(t))− n∞(v(t))τ
′

∞(v(t)))

τ2
1

∫
Ω

∇v(t) · ∇n(t) dx

= − 1

τ2
‖∇n(t)‖2 + (K3 +K4)

∫
Ω

∇n(t) · ∇v(t) dx,

(2.23)

where K3 = sup(n
′

∞(v)τ∞(v)− n∞(v)τ
′

∞(v)) and K4 = sup

(
τ
′
∞(v)n
τ2
∞(v)

)
. Apply-

ing Hölder inequality and Young inequality with ε3, respectively, we obtain

1

2

d

dt
‖∇n(t)‖2 ≤ − 1

τ2
‖∇n(t)‖2 +

ε3
2
‖∇n(t)‖2

+
1

2ε3
(K3 +K4)2‖∇v(t)‖2

≤
(
− 1

τ2
+
ε3
2

)
‖∇n(t)‖2 +

1

ε3
(K3 +K4)2N3

≤ 1

ε3
(K3 +K4)2N3,

(2.24)

where ‖∇v(t)‖ ≤ N3 for some N3 > 0 by previous estimates and ε3 is chosen in

such a way that
(
− 1
τ2

+ ε3
2

)
< 0. Using (2.24) we easily deduce that

‖∇n(t)‖ < C,

∫ t

0

‖∇n(τ)‖2dτ < C, ∀t ∈ R+. (2.25)

This completes the proof of Theorem 2.1.
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3 Continuous Dependence

In this section, we show that the problem (1.1)− (1.4) exhibits continuous de-
pendence to the leak conductance parameter gL. Similar continuous dependence
results can be obtained for other conductance parameters gCa and gK , using a
similar procedure. For brevity we drop the independent variables for the func-
tions below, e.g. v1 means in fact v1(x, t).

Theorem 3.1 Suppose that (vi, ni), i = 1, 2 are strong solutions of the initial
boundary value problem (1.1) − (1.4) corresponding to gLi, i = 1, 2 such that
gL2

= kgL1
for some k > 0. Then one has

‖v1 − v2‖ ≤
C

gL1

, for all t ∈ R+

for some C > 0 that does not depend on gLi, i = 1, 2.

Proof of Theorem 3.1 Let w := v1 − v2 and z := n1 − n2, where v1 and v2

are solutions of the equations (1.1)− (1.4) with the same initial and boundary
values corresponding to gL1

and gL2
, respectively. Then

dvi
dt

= ∆vi − gLivi − gKnivi − gCami

+ gKniEK + gCam∞(vi)ECa + gLiEL + I,
(3.1)

where mi denote m∞(vi). Subtracting equations for vi, we get

dw

dt
= ∆w − (gL1

v1 − gL1
v2)− gK(n1v1 − n2v2)

− gCa(m1v1 −m2v2) + gKEKz + gCaECa(m1 −m2).
(3.2)

Let g and m denote gL1 − gL2 and m1 −m2 respectively. Then

gL1
v1 − gL2

v2 = gL1
w + v2(gL1

− gL2
) = gL1

v + v2g,

n1v1 − n2v2 = n1w + v2z

m1v1 −m2v2 = m1w + v2(m1 −m2) = m1w + v2m.

With these expressions (3.2) becomes

dw

dt
= ∆w − gL1

w − gv2 − gK(n1w + v2z)

− gCa(m1w + v2m) + gKEKz + gCaECam.
(3.3)
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If we take inner product of this equation in L2(Ω) with w, which is possible
thanks to the regularity of solutions provided in the previous section, we get

1

2

d

dt
‖w‖2 = −‖∇w‖2 − gL1

‖w‖2 − g
∫

Ω

wv2 dx

− gK
∫

Ω

n1w
2 dx− gK

∫
Ω

wv2z dx

− gCa
∫
m1w

2 dx− gCa
∫

Ω

wv2mdx

+ gK

∫
Ω

wz dx+ gCaECa

∫
Ω

wmdx.

(3.4)

Using the inequalities n1 ≥ 0, m1 ≥ 0, |m| ≤ 2 and |z| ≤ 2cn together with the
Hölder inequality we obtain

1

2

d

dt
‖w‖2 ≤ −‖∇w‖2 − gL1‖w‖2 + 2cngK‖v2‖‖w‖

+ 2gCa‖v2‖‖w‖+ 2cn|Ω|
1
2 ‖w‖+ 2gCaECa|Ω|

1
2 ‖w‖

= −‖∇w‖2 − gL1‖w‖2 +K5‖w‖,

(3.5)

where K5 = ‖v2‖(g + 2cngK + 2gCa) + 2|Ω| 12 (cn + gCaECa). Using Sobolev
inequality with c2 for the first term and the Young inequality with ε4 for the
third term on the right hand side of (3.5), we obtain

1
2
d
dt‖w‖

2 ≤
(
− 1
c22
− gL1

+ ε4
2

)
‖w‖2 + 1

2ε4
K2

5 (3.6)

where we can choose ε4 in such a way that (− 1
c22

+ ε4
2 ) = 0. In this case, (3.6)

becomes
1

2

d

dt
‖w‖2 ≤ −gL1‖w‖2 +

1

2ε4
K2

5 . (3.7)

Now we estimate the parameter K5. We can re-write K5 as

K5 = ‖v2‖(g + d1) + d2 (3.8)

where d1 = 2cngK + 2gCa and d2 = 2|Ω| 12 (cn + gCaECa). Using the Sobolev
inequality with c3 and the estimate for ‖∇v‖ obtained in (2.22), respectively,
we obtain

K5 ≤ c3(g + d1)‖∇v2‖+ d2

≤ c3K
2
2

2ε2

g+d1
gL2

+ d2

= d3
g+d1
gL2

+ d2

(3.9)

where d3 =
c3K

2
2

2ε2
, and the constant C in (2.22) is chosen accordingly. We note

that the parameters d1, d2 and d3 are independent of gLi , i = 1, 2. Using the
estimate (3.9) in (3.7) we obtain

1

2

d

dt
‖w‖2 ≤ −gL1

‖w‖2 +
1

2ε4

(
d3(g + d1)

gL2

+ d2

)2
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from which, using the assumption gL2 = kgL1 , we can deduce the desired esti-
mate of the form

‖w‖2 ≤
1

2ε4

(
d3(g+d1)
gL2

+ d2

)2

gL1

≤ C

gL1

,

for some positive constant C that does not depend on gLi
, i = 1, 2. This esti-

mate concludes the proof of Theorem 3.1.

Remark 3.2 This kind of estimate together with the existence and uniqueness
of the solution suggest that the problem (1.1)-(1.4) is well-posed.

4 Concluding Remarks

In this paper, existence and uniqueness of strong solutions for a nonlinear system
of Morris-Lecar equations (1.1)− (1.4) under some natural assumptions on data
are proved. To demonstrate continuous dependence of the system (1.1)−(1.4) to
parameters, a continuous dependence estimate to leak conductance parameter
gL is established. Similar continuous dependence estimates can be obtained for
other conductance parameters. As it is well-known, a problem is said to be well-
posed in the Hadamard sense if the solution exists, is unique and continuously
depends on the data. In this sense, our problem is shown to be well-posed. The
authors of this paper plan to study the considered system numerically in the
near future. Later they plan to define some inverse problems for the system
(1.1)− (1.4) and analyze them theoretically and numerically. Both of these are
subjects of the future studies by the authors of this paper.
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