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AN INVERSE COEFFICIENT PROBLEM FOR A NONLINEAR
REACTION DIFFUSION EQUATION WITH A NONLINEAR

SOURCE

SALİH TATAR, SÜLEYMAN ULUSOY

Abstract. In this article, we consider the problem of identifying an unknown

coefficient in a nonlinear diffusion equation. Under appropriate conditions, we

prove the existence and the uniqueness of solution for the inverse problem.
For the numerical solution of the inverse problem, a numerical method based

on discretization of the minimization problem, steepest descent method and

least squares approach is proposed. A numerical example is given to illustrate
applicability and high accuracy of the proposed method.

1. Introduction

We consider the following n-dimensional nonlinear inverse reaction-diffusion prob-
lem

ut = ∇ · (a(u)∇u) + f(u), (x, t) ∈ ΩT ,

u(x, 0) = 0, x ∈ Ω,

−a(u(x, t))∇u(x, t) = ~g(x, t), x ∈ B1
0 , t ∈ [0, T ],

uxi(x, t) = 0, x ∈ Bi0, t ∈ [0, T ], i = 2, . . . , n,

uxi(x, t) = 0, x ∈ Bi1, t ∈ [0, T ], i = 1, . . . , n,

u(x, t) = f1(x, t), x ∈ B1
0 , t ∈ [0, T ],

(1.1)

where Ω := [0, 1]n and ΩT := Ω × (0, T ) are two domains in Rn and Rn+1 respec-
tively, x = (x1, x2, . . . , xn) ∈ Ω, T > 0 is a final time, Bi0 = {(x1, x2, . . . , xi =
0, xi+1, . . . , xn)} and Bi1 = {(x1, x2, . . . , xi = 1, xi+1, . . . , xn)}. In this problem, we
assume that the compatibility condition f1(0, 0) = 0 is satisfied. The last Dirichlet
condition in (1.1) is used as an additional condition.

The parabolic equation in (1.1) has many applications. For instance, it is used
to describe the spread of populations in space [9, 10]. It is also used in modeling
chemical and bio-chemical reactions [7, 14]. In general the nonlinear source term
f(u) is a smooth function and it describes processes with really change the present
u, i.e. something happens to it (birth, death, chemical reactions, etc.) not just
diffuse in the space. Also in the context of heat conduction and diffusion when u
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represents temperature and concentration, f(u) is interpreted as a heat and material
source respectively.

It is known that the direct problem, i.e the problem (1.1) without the additional
condition, has a unique solution if a(u) satisfies certain conditions [6]. The inverse
problem here consists of determining the unknown coefficient a(u) in the problem
(1.1). Nonlinear inverse problems similar to (1.1) have been previously treated
by many authors [1, 2, 3, 4, 5, 12, 13]. In this article, we consider the existence
and uniqueness of the solution of a higher dimensional inverse reaction-diffusion
problem with a general nonlinear source. We prove that the inverse problem has a
unique solution in the class of admissible coefficients.

Now we provide some preliminary material. First we define the following function
spaces:

|u|D = sup
{
u(s), s ∈ D

}
,

Hα(u) = sup
{u(p)− u(q)

d(p, g)α
: p, q ∈ D, p 6= q

}
,

|u|α = |u|D +Hα(u),

|u|1+α = |u|α +
n∑
i=1

∣∣ ∂u
∂xi

∣∣
α
,

|u|2+α = |u|α +
n∑
i=1

∣∣ ∂u
∂xi

∣∣
α

+
n∑

i,j=1

∣∣ ∂2u

∂xi∂xj

∣∣
α

+
∣∣∂u
∂t

∣∣
α
,

where D = ΩT , d(p, q) is usual Euclidean metric for the points p and q in D and
α > 0 is a constant. The space of all functions u for which |u|2+α < α is denoted
by C2+α(D). In [6], it is proved that the space C2+α(D) is a Banach space with
the corresponding norm.

Definition 1.1. A set A satisfying the following conditions is called the class of
admissible coefficients in optimal control and inverse problems:

(1) a ∈ C2+α(I) with |a|2+α ≤ c;
(2) ν ≤ a ≤ µ and a′(s) > 0, for s ∈ I;
(3) |a′| ≤ δ and |a′′| ≤ δ for s ∈ I;

where α ∈ (0, 1), I is a closed interval, a : I → R and c, ν, µ, δ are positive constants.

This article is organized as follows. In section 2 the inverse problem (1.1) is
reduced to an equivalent auxiliary problem and existence and uniqueness of the
inverse problem is proved. We present our numerical method for the numerical
solution of the inverse problem in Section 3. A numerical example is also given to
show efficiency of the method.

2. Existence and uniqueness for the inverse problem

In this section we prove that the inverse problem (1.1) has a unique solution.
We use the well-known Kirchoff’s transformation

Ta(u) =
∫ u

0

a(s) ds,
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where a ∈ A and u > 0. Let u = u(x, t) be a solution of (1.1). Then define v(x, t)
as

v(x, t) = Ta(u(x, t)) =
∫ u(x,t)

0

a(s) ds. (2.1)

From (2.1), we reduce the inverse problem (1.1) to the auxiliary problem

vt = a(T−1
a (v))∆v + a(T−1

a (v))f(T−1
a (v)), (x, t) ∈ ΩT ,

v(x, 0) = 0, x ∈ Ω,

−∇v(x, t) = ~g(x, t), x ∈ B1
0 , t ∈ [0, T ],

vxi(x, t) = 0, x ∈ Bi0, t ∈ [0, T ], i = 2, . . . , n,

vxi(x, t) = 0, x ∈ Bi1, t ∈ [0, T ], i = 1, . . . , n,

v(x, t) = F (x, t), x ∈ B1
0 , t ∈ [0, T ],

(2.2)

where F (x, t) :=
∫ f1(x,t)
0

a(s) ds. We note that d
duTa(u) ≥ ν > 0 implies that Ta(u)

is invertible. Now, we prove the following comparison theorem.

Theorem 2.1. Let f ∈ C1(ΩT ), ~g(x, t) and F be continuous functions. In addition
assume that ~gt(x, t) and ∂F

∂t are positive and continuous functions. Then,

wν ≤ v ≤ wµ, (2.3)

where v is the solution of (2.2), wν and wµ are solutions of the following problem
for λ = ν and λ = µ respectively:

Lλw := λ∆w + λf(T−1
a (w))− wt = 0, (x, t) ∈ ΩT ,

w(x, 0) = 0, x ∈ Ω,

−∇w(x, t) = ~g(x, t), x ∈ B1
0 , t ∈ [0, T ],

wxi(x, t) = 0, x ∈ Bi0, t ∈ [0, T ], i = 2, . . . , n,

wxi(x, t) = 0, x ∈ Bi1, t ∈ [0, T ], i = 1, . . . , n,

w(x, t) = F (x, t), x ∈ B1
0 , t ∈ [0, T ].

(2.4)

Proof. Let ã = a(T−1
a (v)). Now, we estimate Lã(wµ) − Lã(wµ). Since, wµt =

µ[∆wµ + f(T−1
a (wµ))] and vt = ã[∆v + f(T−1

a (v))], we obtain

Lã(wµ)− Lã(v) = (ã− µ) [∆wµ + f(T−1
a (wµ))]. (2.5)

To use the maximum principle on [11, page 177], we need to show that [∆wµ +
f(T−1

a (wµ))] ≥ 0. For this purpose let r = ∂wµ
∂t . Then r(x, t) satisfies

rt =
[
∆r + f ′(T−1

a (wµ))
1

a′(wµ)
r
]
, (x, t) ∈ ΩT ,

r(x, 0) = 0, x ∈ Ω,

−∇r(x, t) = ~gt(x, t), x ∈ B1
0 , t ∈ [0, T ],

rxi(x, t) = 0, x ∈ Bi0, t ∈ [0, T ], i = 2, . . . , n,

rxi(x, t) = 0, x ∈ Bi1, t ∈ [0, T ], i = 1, . . . , n,

r(x, t) =
∂

∂t
F (x, t), x ∈ B1

0 , t ∈ [0, T ].

(2.6)
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Employing the maximum principle on [11, page 177], we conclude that r ≥ 0, which
implies that [∆wµ+f(T−1

a (wµ))] ≥ 0. Thus, Lã(wµ)−Lã(v) ≤ 0. By the maximum
principle [11, page 172], we conclude that wµ ≥ v. The proof for the other side of
the inequality (2.3) is similar. �

Now, we state and prove an existence theorem.

Theorem 2.2. Under the conditions of Theorem 2.1, the inverse problem (1.1)
has a solution for each a ∈ A.

Proof. Let z0 = 0 and zn, n = 1, 2, . . . , be solution of the problem

(zn)t = a(T−1
a (zn−1))[∆zn + f(T−1

a (zn−1))], (x, t) ∈ ΩT ,

zn(x, 0) = 0, x ∈ Ω,

−∇zn(x, t) = ~g(x, t), x ∈ B1
0 , t ∈ [0, T ],

(zn)xi(x, t) = 0, x ∈ Bi0, t ∈ [0, T ], i = 2, . . . , n,

(zn)xi(x, t) = 0, x ∈ Bi1, t ∈ [0, T ], i = 1, . . . , n,

zn(x, t) = F (x, t), x ∈ B1
0 , t ∈ [0, T ].

(2.7)

Then zn is a bounded sequence in C2+α(ΩT ) [6]. Now we show that zn is monotone
increasing. For this we employ induction. If we put n = 1 in (2.7) and note that
z0 = 0 we obtain

(z1)t = a(T−1
a (0)[∆z1 + f(T−1

a (0) = a(0)[∆z1 + f(0)]. (2.8)

This says that z1 is a solution of (2.2) for λ = a(0). Using Theorem 2.1 we deduce
that z1 ≥ z0. Now suppose that zn−1 ≤ zn. Applying the same method in Theorem
2.1 for zn+1 and zn we find that zn ≤ zn+1 which shows that {zn}, is a monotone
increasing sequence. Applying a simple version of Lemma 1 in [1] we deduce that
there is a z ∈ C2+α(ΩT ) such that

∆zn → ∆z, as n→∞,
zn → z, as n→∞.

Passing to the limit in the first equation of (2.7) as n → ∞ and observing that z
satisfies all conditions in (2.2) we find that z satisfies the problem (2.2). �

As z is a solution of (2.2) and the operator Ta is invertible, u = T−1
a z is a

solution of the problem (1.1).

Theorem 2.3. Under the assumptions of Theorems 2.1 and 2.2, the problem (1.1)
has a unique solution.

Proof. Let u(x, t) and v(x, t) be two solutions of (2.2) and let z(x, t) = v(x, t) −
u(x, t). Then

zt = vt − ut = [a(T−1
a (v))∆v − a(T−1

a (u))∆u]

+ [a(T−1
a (v))f(T−1

a (v))− a(T−1
a (u))f(T−1

a (u))].
(2.9)

Now, we estimate the term in the first bracket on the right hand side of (2.9). For
this, add and subtract the term a(T−1

a (v))∆u. Then, we have

a(T−1
a (v))∆v − a(T−1

a (u))∆u = a(T−1
a (v))∆z + [a(T−1

a (v))− a(T−1
a (u))]∆u.
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Using smoothness of the functions a and T−1
a , we conclude that

a(T−1
a (v))− a(T−1

a (u)) = (C(x, t)∆u) z, (2.10)

where

C(x, t) =
a′
(
pa(T−1

a (v(x, t)), T−1
a (u(x, t)))

)
a(qa(v(x, t)), u(x, t))

and pa(y1, y2), qa(y1, y2) are two numbers between y1 and y2.
Next, we estimate the term in the second bracket on the right hand side of (2.9).

Let h(s) = a(s)f(s). Then

a(T−1
a (v))f(T−1

a (v))− a(T−1
a (u))f(T−1

a (u))

= h(T−1
a (v))− h(T−1

a (u)) =
h′(T−1

a (ũ))
a(qa(v(x, t), u(x, t)))

z,
(2.11)

where ũ is a number between T−1
a (v) and T−1

a (u).
Combining (2.10), (2.11) we conclude that z(x, t) satisfies the equation

zt = a(T−1
a (v))∆z + C∗(x, t)z,

where

C∗(x, t) = C(x, t)∆u+
h′(T−1

a (ũ))
a(qa(v(x, t), u(x, t)))

.

Moreover, z(x, t) satisfies the initial and boundary conditions

z(x, 0) = 0, x ∈ Ω,

−∇z(x, t) = ~0, x ∈ B1
0 , t ∈ [0, T ],

zxi(x, t) = 0, x ∈ Bi0, t ∈ [0, T ], i = 2, . . . , n,

zxi(x, t) = 0, x ∈ Bi1, t ∈ [0, T ], i = 1, . . . , n,

z(x, t) = 0, x ∈ B1
0 , t ∈ [0, T ].

Employing the maximum principle [11, page 177] for z(x, t), we conclude that
z(x, t) ≡ 0, which concludes the proof. �

3. Numerical solution of the inverse problem

In this section, we present our numerical method for the solution of the inverse
problem. For simplicity, we consider only one dimensional case in space. In this
case, the inverse problem (1.1) becomes

ut = (a(u)ux)x + f(u), (x, t) ∈ ΩT ,

u(x, 0) = 0, x ∈ Ω,

−a(u(0, t))ux(0, t) = g(t), t ∈ [0, T ],

ux(1, t) = 0, t ∈ [0, T ],

u(0, t) = f1(t), t ∈ [0, T ],

(3.1)

where Ω := [0, 1] and ΩT := Ω× (0, T ).
We note that the same method is used in [13]. For the completeness of the

content, we explain the main steps of the method. The essence of the method is
to approximate the unknown coefficient a(u) by polynomials. Since the unknown
diffusion coefficient a(u) is continuous on a compact domain ΩT , there exists a
sequence of polynomials converging to a(u). Our starting point is that the correct
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a(u) will yield the solution satisfying the condition u(0, t) = f1(t), hence a(u) will
minimize the functional

F (c) = ‖u(c, 0, t)− f1(t)‖22,

where u(c, x, t) is the solution of the direct problem with the diffusion coefficient
c(u) and ‖ · ‖2 is the L2 norm on Ω. Hence, our strategy is to find a polynomial
of degree n that minimizes F (c), i.e, nth degree polynomial approximation of a(u)
for the desired n. From now on we take c(u) = c0 + c1u + · · · + cnu

n as c =
(c0, . . . , cn), hence F (c) is a function of n variables. To overcome the ill-posedness
of the inverse problem, Tikhonov regularization is applied. A regularization term
with a regularization parameter λ is added to F (c)

G(c) = ‖u(c, 0, t)− f1(t)‖22 + λ‖c‖2,

where ‖c‖ denotes the Euclidean norm of c. From now on, we fix n and λ.
The method for minimizing G(c) depends on the properties of F (c), e.g., con-

vexity, differentiability etc. In our case, the convexity or differentiability of F (c) is
not clear due to the term u(c, x, t). However, we do not envision a major drawback
in assuming the differentiability of F (c) in numerical implementations. For this
reason, we proceed the minimization of G(c) by the steepest descent method which
will utilize the gradient of F . In this method, the algorithm starts with an initial
point b0, then the point providing the minimum is approximated by the points

bi+1 = bi +4bi,

where 4bi is the feasible direction which minimizes

E(4b) = G(bi +4b).

This procedure is repeated until a stop criterion is satisfied, i.e, ‖4bi‖ < ε or
|G(bi+1) − G(bi)| < ε or a certain number of iterations. In the minimization of
E(4b), we use the following estimate on u(bi +4b, 0, t):

u(bi +4b, 0, t) ' u(bi, 0, t) +∇u(bi, 0, t) · 4b,

where ∇ denotes the gradient of u(b, 0, t) with respect to b. Hence E(4b) turns out
to be

E(4b) = ‖∇u(bi, 0, t) · 4b+ u(bi, 0, t)− f1(t)‖22 + λ‖4b‖22.
In numerical calculations, we note that ‖ · ‖2 can be discretized by using a finite
number of points in [0, T ], i.e., for t1 = 0 < t2 < · · · < tq = T , hence E(4b) has its
new form as

E(4b) '
q∑

k=1

(u(bi, 0, tk) +∇u(bi, 0, tk) · 4b− f1(tk))2 + λ‖4b‖22. (3.2)

Now the minimization of this problem is a least squares problem whose solution
leads to the normal equation (see [8])

(λI +ATA)4b = ATK,

where

A = [∇u(bi, 0, t1)T . . .∇u(bi, 0, tq)T ],

K = [u(bi, 0, t1)− f1(t1) . . . u(bi, 0, tq)− f1(tq)]T .
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Now the optimal direction is found by

4b = (λI +ATA)−1ATK. (3.3)

In forming A, the computation (or estimation ) of sth component of the vector
∇u(bi, 0, tk) can be achieved by

u(bi + hes, 0, tk)− u(bi, 0, tk)
h

, (3.4)

where es is the standard unit vector whose sth component is 1 and h is the differ-
ential step.

The algorithm can be summarized by following steps:
Step 1. Set b0, n, λ and a stopping criterion k or ε (iteration number less than k
or size of ‖4bi‖ ≤ ε).
Step 2. Calculate 4bi using (3.3) and set bi+1 = bi +4bi.
Step 3. Stop when the criterion is achieved.

Example. In this example, we solve the inverse problem (3.1) for f(u) = Du
(
1−

u
K

)
, where D the constant growth rate, and K is the carrying capacity as limitation

of growth for population dynamics model. For simplicity, we takeD = K = 1, hence
f(u) = u(1− u). We also take g(t) = sin(t). The additional data u(0, t) = f1(t) is
found numerically. The correct solution is a(u) = 1 + 2u+ 3u2 + u3. See Table 1.
We note that all computations have been carried out in MATLAB. In solving the
direct problem for each value of c, MATLAB PDE solver is used.

Because of the discretization of the problem, many variables appear in compu-
tations. These variables and their values in our computations are listed below:

(1) The degree of the polynomial c(u): n = 2, 3, 4, 5 are taken.
(2) Initial guess for the coefficients of c(u): All initial guesses for the coeffi-

cients are taken to be vectors composed of 1’s in order to get an objective
observation.

(3) Differential step h: h = 0.1, h = 0.01 are taken.
(4) Number of t points: q = 10 and q = 100 are taken.
(5) Number of (x, t) points in mesh grid used in Matlab PDE solver: taken to

be q × q where q is already determined in (4).
(6) Stopping criterion: ε = 0.01 or maximum iteration number: k = 100.
(7) Regularization parameter: λ is taken to be zero in the noise-free examples,

but an optimal λ is searched to deal with noisy data. Since the problem is
highly nonlinear, we seek the best regularization parameter empirically.

In the applications, the additional data u(0, t) is generally given with a noise,
i.e., u(0, t) + γ u(0, t) where γ is called noise level and is generally less than 0.1.
The example is now tested with u(0, t) plus some noise. The algorithm is run for
the best choices of h, q and the initial guesses in the previous calculations, i.e.,
h = 0.1, q = 100. The noise levels are taken as γ = +0.02,−0.04. Table 2 and
Table 3 shows the results. In this table, we also give the relative errors which is
defined as

‖u− ua‖∞
‖u‖∞

,

where ‖ · ‖∞ denotes maximum norm, u and ua are the solutions corresponding to
the correct a(u) and observed a(u) respectively. The relative error provides a gauge
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to compare the results for noisy data for different regularization parameters. See
Table 4.

Table 1. Initial guesses and results for n = 2, 3,4,5.

Initial guess h = 0.1, q = 10
(1,1) (0.9486, 2.5990 )

(1,1,1) (0.9862, 2.1632, 1.6133)
(1,1,1,1) (1.0176, 1.7199, 2.9978, -0.5290)

(1,1,1,1,1) (1.0194, 1.5602, 4.7561, -6.1976, 6.1034 )
h = 0.01, q = 10

(1,1) (0.9521, 2.5653)
(1,1,1) (0.9996, 2.0289, 1.7452)

(1,1,1,1) (0.9922, 2.1623, 1.0803, 1.6373)
(1,1,1,1,1) (1.0101, 1.7365, 3.6651, -3.9461, 4.5934)

h = 0.1, q = 100
(1,1) (0.9506, 2.5998)

(1,1,1) (1.0008, 2.0268, 1.8113)
(1,1,1,1) (1.0095, 1.8579, 2.4673, 0.0554)

(1,1,1,1,1) (1.0028, 1.9976, 1.6339, 1.8159, -0.4184)
h = 0.01, q = 100

(1,1) (0.9611, 2.5334)
(1,1,1) (0.9941, 2.0922, 1.6526)

(1,1,1,1) (1.0006, 2.0090, 1.7427, 0.8832)
(1,1,1,1,1) (0.9961, 2.1296, 0.8972, 2.9274, -0.8337)

Table 2. The results for given γ values.

Initial guess γ = +0.02 Relative error
(1,1) (0.9247, 2.4262) 0.0531

(1,1,1) (0.9541, 2.0427, 1.3576) 0.0350
(1,1,1,1) (0.9694, 1.7606, 2.5081, -0.6971) 0.0290

(1,1,1,1,1) (0.9598, 1.9843, 1.0394, 2.8274, -2.2120) 0.0256

Table 3. The results for given γ values.

Initial guess γ = −0.04 Relative error
(1,1) (1.0024, 2.9468,) 0.0298

(1,1,1) (1.0941, 1.9951, 2.7186) 0.0076
(1,1,1,1) (1.0897, 2.0524, 2.3855, 1.5605) 0.0078

(1,1,1,1,1) (1.0889, 2.0244, 2.8228, -0.2071, 3.1688) 0.0078

The above experiment clearly indicates that the initial guess, q (the number of t
points) and n (the degree of the polynomial c(u)) are the main factors affecting the
accuracy of the solutions. The changes in differential step h is observed to have a
negligible effect in finding feasible directions. In our experiments h = 0.1 appears
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Table 4. Regularization parameters and relative errors for differ-
ent noise levels.

γ = +0.02 γ = −0.04
(1,1) (0.9250, 2.4252) (1.0029, 2.9955)

λ 10−5 10−4

Relative error 0.0530 0.0299
(1,1,1) (0.9635, 1.9784, 1.4416) (1.0910, 2.0231, 2.6732)

λ 10−4 10−5

Relative error 0.0350 0.0077
(1,1,1,1) (1.0105, 1.7411, 1.3630, 1.1535) (1.0845, 2.1218, 2.1640, 1.7523)

λ 10−3 10−4

Relative error 0.0281 0.0078
(1,1,1,1,1) (0.9661, 1.9976, 1.1769, 0.8555, 0.8037) (1.0782, 2.1933, 2.0096, 1.6764, 1.4226)

λ 10−4 10−4

Relative error 0.0243 0.0078

to be good enough for a satisfactory solution. The initial guesses have to be chosen
close enough to the coefficients of the correct solution. However, it is hard to give
a radius of the trust region around the expected coefficients. One way to overcome
this problem is to start with n = 1 with several initial guesses then choose the best
one for it (call it x0) then make it n = 2, use the solution (x0, 1) as an initial guess
and repeat it for the other dimensions. Although the initial guesses in the above
experiment have not been determined with this procedure, that approach also has
been observed to work well in the example. It is observed that q has a significant
impact on the solution. However, the way how it affects the algorithm is not very
clear. It appears that in q = 100 works better. As we mentioned above, we solve
the direct problem by MATLAB PDE solver which uses Finite Element Method
(FEM). In general, increase of mesh points will also increase the accuracy of the
solution. This might be the fact behind the result q = 100 works better than q = 10
using the same initial guesses in the example.

The effect of regularization parameter becomes apparent in the noisy case. Since
the problem is highly nonlinear, we seek the best regularization parameter empir-
ically. We present the best regularization parameter with their relative errors, see
Table 4. When the optimal regularization parameter is used, the algorithm ends at
relatively better coefficients.

Acknowledgments. This research was supported by the Scientific and Techno-
logical Research Council of Turkey (TÜBİTAK) through the project Nr 113F373,
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