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ABSTRACT This paper presents a non-iterative online approach to identify the modeling parameters of
a photovoltaic (PV) module. It is motivated by the fact that accurate and reliable modeling of distributed
energy resources (DERs) in DC Microgrids improves their stability and efficiency under a wide range of
operational conditions. In particular, the case where PV modules are used as DERs in their current-source
region is considered. The proposedmethod addresses the limitations associated with parameter identification
in these settings. Specifically, the method works under varying temperature and insolation conditions relying
only on current and voltage sensors that already exist in the power electronic converters tying the PV DER
to the Microgrid. Also, its algorithm is practical and reliable as it does not rely on a priori knowledge or
an initial guess, and it is non-iterative, so it does not risk divergence (or require proof of convergence) as
other iterative algorithms. Moreover, it is both fast and of a low computational complexity, which enables its
implementation on microcontrollers within PV DER systems. The development of this method is detailed
in the paper along with its application steps to facilitate its adoption. Furthermore, an experimental setup
was used to test the proposed method under different ambient conditions and demonstrated its efficacy with
algorithm execution times of under 1 second and high modeling accuracy on a microcontroller.

INDEX TERMS Photovoltaic system modeling, DC microgrids, parameter identification, maximum power
point, non-iterative techniques.

NOMENCLATURE
PV MODEL VARIABLES AND PARAMETERS
Ns Number of cells in series forming a string.
Np Number of strings in parallel in a module.
Vc, Ic Cell terminal voltage and current.
V Module terminal voltage, =NsVc.
I Module terminal current, =NpIc.
Pm Module maximum power point (MPP).
Vm, Im Module voltage and current at MPP.
Iph Cell photoelectric current.
Id p-n junction diode current.
I0 p-n junction diode scaling (saturation) current.
VT p-n junction thermal voltage.
S Module insolation.
T p-n junction Temperature.
n p-n junction ideality factor.

The associate editor coordinating the review of this manuscript and
approving it for publication was Amin Hajizadeh.

α scaling factor, =nVT .
Rs Cell series resistance.
Rp Cell parallel (shading) resistance.
Gp Cell parallel conductance, =1/Rp.

PV MODELS
SDM Single diode model.
SSDM Simplified SDM, eliminates Rs.
ISDM Ideal SDM, eliminates Rs and Rp.

IDENTIFICATION MODEL
y,W Regressor vector and matrix.
K Vector of unknown parameters.
N Total number of sampled data points.
n Index of sampled data points.
EI Identification model error index.
RE Relative error at a key operating point.
ēx Normalized relative error of a variable x.
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I. INTRODUCTION
Photovoltaic (PV) systems are becoming the main distributed
energy resource (DER) of choice in modern-day deployment
of renewables. Whether these PV systems are on rooftops
or part of a large-scale power plant, they are competitively
bringing down the cost of renewables in the electric power
production market. In medium to large-scale PV systems,
PV modules are connected in strings with a string inverter
converting their DC power to an AC bus supplying power
to the main grid. PV DER modules can alternatively be
connected within an autonomous Microgrid. Modeling their
performance in these Microgrids is essential for their reliable
operation.

A. PV SYSTEMS IN DC MICROGRIDS
Relatively recent paradigms consider integrating PV systems
within DC microgrids; see the surveys by Olivares et al. [1],
Dragicevic et al. [2], and Chen et al. [3]. These Microgrids
are electrical networks consisting of DERs, loads, Energy
Storage Systems (ESS’s), and supervisory control and data
acquisition (SCADA) systems. They allow an entity, e.g.,
a university campus or a neighborhood, to have autonomous
operation that can be either islanded from or connected to
the main AC power grid. Optimal operation of these Micro-
grids requires modeling of their modules to achieve and
maintain their autonomous, resilient, and maximum power
production capabilities. Therefore, effective models of PV
modules that are both accurate and practically identifiable
are needed to overcome difficulties in active control, failure
detection, Maximum Power Point (MPP) identification and
tracking, and overall reliable operation of the DERs within
Microgrids. This is particularly important when insolation
and temperature conditions change throughout the day. Accu-
rate current vs. voltage I-V and power vs. voltage P-V models
are also required to deliver specific power outputs and achieve
balanced operation. Moreover, PV systems can be operated in
their current-source or voltage-source regions. Either region
along with the MPP can be sufficient in providing the full
range of operating points (and power outputs) for the DC
Microgrid. The current-source region is suitable when the
Microgrid is of a low voltage or an isolated high-frequency
DC to DC converter is used, while the voltage-source region
is especially suited to more efficiently achieve a high step up
in DC voltage when a non-isolated boost converter is used.

B. PV CIRCUIT MODELS
Researchers have considered several lumped-parameter cir-
cuit models of a PV cell in order to obtain its characteristic
I-V and P-V curves. Moreover, they, e.g., Kennerud [4] and
Masters [5], have detailed the impact of parameter variations
within these models on the characteristic curves and the per-
formance of the PV cell. The models directly extend to panels
with cells connected in series to form a string providing more
voltage as well as strings connected in parallel providing
more current. Furthermore, the model can be extended for

panels connected to form an array. The simplest model of
the PV cell includes an insolation dependent current-source
in parallel with a diode representing its p-n junction. This
model, known as the Ideal Single-Diode Model (ISDM),
captures the nonlinear I-V relationship under varying tem-
perature and insolation conditions. Three parameters are key
to this model, namely, a photoelectric current Iph, a diode
scaling current I0, and an exponential term scaling factor α
itself the product of the diode’s ideality factor n and thermal
voltage VT . However, the ISDM cannot explain the existence
of a parallel resistive path within the cell that is especially
important for modeling partially shaded panels, and it does
not explain the voltage regulation effects occurring near the
open-circuit condition due to the effective series resistance of
the path to the terminals of the cell [5]. Therefore, a more
accurate model adds a parallel resistance Rp and a series
resistance Rs to model these two phenomena, respectively.
This results in a five parameter nonlinear Single-DiodeModel
(SDM). Other higher precision models exist for the PV
cell that include a double-diode model [6], [7] or even a
triple-diode model [8]. However, the parameter identification
for such models is more complex and requires a priori data
due to their high degree of nonlinearity. A commonly pro-
posed simplification of the SDM is to eliminate Rp. Instead,
we propose to eliminate Rs referring to this model as the
Simplified SDM, or SSDM.

C. PARAMETER IDENTIFICATION
A parameter identification method is then required to fit the
model of a given PV module. In the literature, the majority
of these methods rely on data collected over the full range
of the I-V curve from the short-circuit current Isc to the
open-circuit voltage Voc operating points to fit the SDM.
Kennerud [4], for example, used specific points on the I-V
curve including the slopes near Isc and Voc in an iterative
algorithm to simultaneously solve a set of nonlinear equations
for the parameters. He demonstrated the impact of varying
each parameter on the performance of the PV cell. Similarly,
Haouari-Merbah et al. [6] employed an iterative technique to
identify the parameters of the SDMmodel. They emphasized
the importance of avoiding measurement errors in current
and slope calculations near the Voc, and those in the voltage
near the Isc. Also, Phang et al. [9] used the same points as [4]
including the I-V curve slopes in addition to the junction
temperature measurement, but they solve for the parameters
directly in a non-iterative manner with some simplifications.
Toledo et al. [10] have utilized a linear least-squares method
to find the parameters of the SDM in a non-iterative manner
as a first step. This generates a large but finite number of
parameter sets that are then searched for the set that yields
the minimum error between the estimated curve and the
data. Next, the authors use a refinement process to further
reduce the modeling error in the identified parameter set.
This method is both non-iterative and precise, however, the
search step and refinement processes can limit its use in
online parameter identification. Moshksar and Ghanbari [11]
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reduce the model equations by reformulating them in terms
of the independent variables, and then solving the resulting
set of equations as a convex optimization problem, without a
priori information, using an adaptive gradient descent itera-
tive method. Lim et al. [12] use a different linear approach,
where the nonlinear SDM is converted into the problem of
solving a set of linear differential equations, using the Laplace
transform, to obtain the parameters. However, the value of Rs
must be iteratively adjusted in an outer loop containing the
integrals of the differential equations until the algorithm
converges.

Alternatively, using information from the data sheet of
the PV panel, the SDM model parameters were identi-
fied using iterative algorithms by Sera et al. [13] and by
Villalva et al. [14]. In both these cases, the model accounts
for variations in temperature and insolation, which facilitates
using them in circuit simulationmodels. If instead bothRs and
Rp are ignored, the simpler ISDM can be solved explicitly as
shown by [15] but this results in a lower modeling accuracy.

On the other hand, linear polynomial curve fitting of
the SDM model was used by several researchers, see
Xiao et al. [16], Andrei et al. [17], Paviet-Salomon et al. [18]
and references therein. This approach results in polynomials
of orders ranging from four to eight (depending on the type
of PV cell and the number of data points extracted from the
I-V curve), which simplifies solving for specific operating
points instead of iteratively solving the nonlinear PV models.
A comparison was performed by Ibrahim and Anani [19]
between different methods. It showed that some analytical
techniques with simplified models can produce comparable
results to iterative methods of higher computational cost.

Moreover, a wealth of heuristic and meta-heuristic
algorithms have been developed for the parameter identifi-
cation of PV modules. Genetic Algorithms (GA) and Parti-
cle Swarm Optimization (PSO), for example, were utilized
in [20], [21] to identify the parameters of PV cells. A PSO
is employed in [22], which involves a large amount of input
data to the algorithm in order to extract the cell parameters.
For the double diode model (DDM), Bradaschia et al. [23]
use a combination of analytical equations and a pattern
search iterative algorithm to estimate them. An improved
multiswarm PSO iterative algorithm was developed by
Nunes et al. [24] for the DDM that achieves high modeling
accuracy, and it takes about a minute for convergence on
a 3.6 GHz CPU. In [25], a modified flower pollination
algorithm (FPA) is presented to estimate the parameters
of SDM and DDM of PV cells and modules. Despite its
accuracy, the algorithm requires a high number of iterations
before it converges. Using an improved opposition-based
tunicate swarm algorithm (OTSA), the work in [26] estimates
the parameters of SDM for polycrystalline and monocrys-
talline PV modules. For PV SDM and DDM modules,
a chaotic gradient-based optimization (CGBO) algorithm is
proposed in [27] to find their parameters. In [28], a dynamic
self-adaptive and mutual-comparison teaching-learning-
based optimization (DMTLBO) algorithm is presented for

TABLE 1. Summary of parameter identification methods.

extracting PV parameters. Also, Huang et al. [29] developed
a meta-heuristic search algorithm for the SDM and DDM
models that is self-adaptive in the iteration steps. The results
of their algorithm are precise, however, it takes minutes
to conclude on a CPU. Such algorithms have a high com-
putational complexity and are therefore suited for offline
parameter identification.

Therefore, depending on the application at hand, the PV
system requires a specific model coupled with an effective
parameter identification method. The aforementioned tech-
niques are more than adequate to address applications such
as offline characterization (e.g., for certification) or the devel-
opment of simulation models, however, they are not practical
for online identification. More recently, online parameter
identification was addressed by Lappalainen et al. [30] for
the SDM model using the data sheet information as an initial
guess, with an iterative technique that modifies the parameter
values to best fit the measured I-V curves.
The aforementioned literature on parameter identification

methods can be summarized as shown in Table 1.
In this work, an online parameter identification method is

developed and demonstrated that is capable of:

1) Accurately identifying the MPP.
2) Identifying any specific output power operating point.
3) Operating under varying insolation and temperature.
4) Online parameter identification, i.e., conducted while

the PV system is supplying power to a DC Microgrid.
5) Using a limited data range, without pre-identification

of Isc, Voc, the MPP, or any other operating point.
6) Fast operation with minimal memory complexity when

implemented on a microcontroller.
7) Reliable determination of SSDM model parameters.

As such, to the best knowledge of the authors, it is the
only online identification method that is non-iterative and
accuratelymodels the PVmodule in the current-source region
of operation. Reliability of iterative techniques requires proof
of convergence, otherwise they can risk diverging during
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FIGURE 1. Typical PV module I-V curve and its regions of operation.

FIGURE 2. Typical PV module P-V curve and its regions of operation.

online operation. The remainder of the paper is organized
as follows: The proposed PV cell and module models are
given in Section II. In Section III, the equations underlying
the proposed parameter identification method are developed.
This is followed by an experimental validation of the pro-
posed method and an outline of its practical implementation
in Section IV. Conclusions are drawn in Section V with sug-
gestions for future work.

II. PROPOSED PV MODELING
The modeling of any DER, and indeed any electrical device,
starts with obtaining its I-V characteristic curve at its ter-
minals. As a DER the power output capability at different
voltage levels is also important, and is represented by its
P-V characteristic curve. For a PV module, the I-V and P-V
curves depicted in Figures 1 and 2, respectively, represent a
typical PV module and can be obtained offline by varying a
connected resistive load between the short-circuit and open-
circuit operating points, registering Isc and Voc, respectively.

FIGURE 3. PV cells circuit diagrams (a) Ideal Single-Diode Model (ISDM)
(b) Single-Diode Model (SDM) (c) Simplified Single-Diode Model (SSDM).

Moreover, when a PV DER is connected to a Micro-
grid through a power electronic converter, several operating
modes are possible. It can regulate its duty ratio to attain
the MPP, noting that Vm and Im are the voltage and current
at the MPP, and Pm is the MPP. Alternatively, it can target
an operating point with a specific lower power output (to
balance the Microgrid) either in the current-source region
or in the voltage-source region. The type of converter used
depends on the voltage level at the main bus of the Microgrid.
So, for example, if a higher level DC voltage is required
at the main bus, a boost converter is used, and in practice,
if the current-source region is selected, the exact short-circuit
condition and its neighboring region is not reachable due to
the voltage drop across the power transistor used by the boost
converter. This fact can limit the amount of data collected by
an online parameter identification method. Also, operating
online in one region (e.g., the current-source) may limit the
amount of data collected in the other (e.g., voltage-source).
So online parameter identification techniques must account
for limitations in data collection.

A. PV CELL MODEL
As previously mentioned, the simplest model to consider for
a PV cell is the ISDM in Figure 3a, which consists of a
current-source generated by insolation and is connected in
parallel to a p-n junction diode model of the cell. Accounting
for the linear drop in the output current in the current-source
region requires Rp, and similarly, the voltage regulation effect
in the voltage-source region requires Rs. Including both these
resistances in the circuit model results in the SDM shown
in Figure 3b. In this work, we focus on the operation of the
PV system as a DER tied to a DC Microgrid in the current-
source region, including the MPP. Therefore, we propose
using a simplified SDM (SSDM) eliminating Rs as shown in
Figure 3c, and keeping Rp, which is the basis for developing a
practical real-time online approach in this work. However, for
other applications where voltage-source operation is desired,
either the SDM or a simplified SDM that only ignores Rp
should be used.

VOLUME 10, 2022 11435



A. M. A. Oteafy et al.: Fast Online Parameter Identification for Current Source Operated PV Modules

FIGURE 4. Proposed PV module circuit model.

The resulting PV cell model is given by the I-V
relationship:

Ic = Iph − Id − Ip = Iph − I0[e
Vc
nVT − 1]−

Vc
Rp
, (1)

where Ic is the cell output current, Iph is the photoelectric
current that is proportional to the insolation, Id is the p-n
junction diode recombination current, Ip is the current in the
parallel path through the cell, I0 is the scaling current, Vc is
the cell terminal (output) voltage, n is the ideality factor of
the p-n junction, and VT is the thermal voltage.
Given that Rs is ignored in this model, the terminal voltage

Vc is equal to the voltage appearing across the p-n junction.
Also, under short-circuit conditions Isc = Iph.

Defining a scaling factor α = nVT , accounts for variations
in n for different types of PV cells (different p-n junction
electron-hole recombination processes) and in VT that varies
with temperature as VT = kTc/q, where k is Boltzmann’s
constant (1.3806 × 10−23 J/K), Tc is the p-n junction tem-
perature, and q is the electron charge (1.6021 × 10−19 C).
Accordingly, the PV cell model is given by

Ic = Iph − I0[e
Vc
α − 1]−

Vc
Rp
. (2)

Finally, during the operation of the PV cell, Iph � I0,
therefore, the model simplifies to

Ic = Iph − I0e
Vc
α −

Vc
Rp
, (3)

with four model parameters to be identified at any given
temperature and insolation level, namely, Iph, I0, α and Rp.

B. PV MODULE MODEL
The proposed SSDM can be extended to a module with Ns
cells connected in series forming a string, and Np strings in
parallel forming a module. Its circuit is depicted in Figure 4.
Then, the terminal voltage and current are related to the cell
voltage and current by V = NsVc and I = NpIc, respectively.
The I-V characteristics for the PV module are therefore

I = NpIc = NpIph − NpI0e
Vc
α −

NpVc
Rp

. (4)

Substituting for Vc = V/Ns we have

I = NpIph − NpI0e
V
Nsα −

NpV
NsRp

. (5)

Then, in application, the PV module model in (5) may be
used or, alternatively, a scaled model that has the same form
as (3) but represents the average performance of the cells in
the module, that is,

Ic = Iph − I0e
Vc
α −

Vc
Rp
. (6)

To use this scaled model, the measured V and I are simply
divided by Ns and Np to obtain the scaled voltage Vc and
current Ic, respectively. Note that this scaled model is not the
actual performance of any individual cell due to mismatches,
e.g., in the fabrication of the cells.

III. PARAMETER IDENTIFICATION MODEL DERIVATIONS
Using the scaled PV module model (6), two sets of identifi-
cation model equations can be derived to obtain the unknown
parameters. The process is non-iterative and uses data col-
lected over a limited range of the I-V curve. The known
parameters are the number of cells in seriesNs and the number
of strings in parallel Np. The measurable variables are I and
V of the PV module, from which the scaled variables Vc =
V/Ns and Ic = I/Np are directly computed. These vari-
ables are measured in a range starting near the short-circuit
condition up to any point beyond the MPP, i.e., towards
the open-circuit condition. The N recorded data points are
arranged with an index of n = 1, 2, . . . ,N . The unknown
parameters to be found are the parallel resistance per cell Rp,
the photoelectric current Iph, the scaling factor α, and the
scaling current of the p-n junction model I0. Note that any
variations in junction temperature and insolation are captured
by identifying these parameters, so only current and voltage
sensors are required for data collection.

A. IDENTIFICATION OF Iph AND Rp

The first identification model is used to find Iph and Rp. Near
the short-circuit operating point Vc ≈ 0, and (6) simplifies to

Ic ≈ Iph − GpVc, (7)

where, the parallel conductance Gp = 1/Rp. This can be
written in regressor form as

y = WK , (8)

where,

y , Ic, W , [1 − Vc], K , [κ1 κ2]T , [Iph Gp]T .

That is, y andW are known from the measured variables, and
K contains the unknown parameters. To solve this regres-
sor, Nsc data points that are sampled near the short-circuit
operating point are used. These samples are indexed as
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n = 1, 2, . . . ,Nsc. To find the vector K , we define the mean
squared error as

E2(K ) =
Nsc∑
n=1

(y(n)−W (n)K )2. (9)

Multiplying out we get

E2(K ) = Ry − RTWyK − K
TRWy + KTRWK , (10)

where,

Ry =
Nsc∑
n=1

y2(n),

RW =
Nsc∑
n=1

W T (n)W (n),

RWy =
Nsc∑
n=1

W T (n)y(n). (11)

If the data collected sufficiently excites the model then RW
will be invertible, and we can minimize the error by

∂E2(K )
∂K

= −2RWy + 2RWK = 0, (12)

or

K = R−1W RWy. (13)

Note that Vc(n) is nonnegative over the range of n =
1, . . . ,Nsc, with one zero value at the short-circuit operating
point and positive values otherwise. Therefore, the matrix
W T (n)W (n) is full rank and so is RW . Consequently, RW
is invertible and (13) will yield κ1 = Iph and κ2 = Gp
where Rp = 1/Gp, which minimize the squared error in (10).
Notwithstanding the fact that RW is full rank, it is important
to use Gaussian elimination or LU decomposition to obtain
R−1W in real-time implementation, as opposed to calculating it
through the adjugate matrix. This minimizes numerical errors
and is common practice in linear algebra libraries such as
the BasicLinearAlgebra library [31] used on the Arm
Cortex M3 microcontroller in this work.

B. IDENTIFICATION OF α AND I0
This step is used to identify the scaling factor α of the
exponential term and the scaling current I0. Differentiating
Ic with respect to Vc, i.e., for any two neighboring points on
the I-V curve

∂Ic
∂Vc
= −

1
α
I0e

Vc
α −

1
Rp
, (14)

or

α
∂Ic
∂Vc
+ α

1
Rp
= −I0e

Vc
α . (15)

Substituting back in (6) and rearranging gives

Iph − Ic −
Vc
Rp
= α

(
−
∂Ic
∂Vc
−

1
Rp

)
. (16)

Note that in normal operation, the left hand side of (16) is
always positive, and the derivative ∂Ic/∂Vc is always nega-
tive. Next, rearranging (6)

Iph − Ic −
Vc
Rp
= I0e

Vc
α . (17)

Now, taking the natural logarithm of both sides, which are
always nonnegative, and rearranging we obtain

Vc = α ln
(
Iph − Ic −

Vc
Rp

)
− α ln (I0). (18)

Combining (16) and (18) in regressor form we get

y2 = W2 K2, (19)

where,

y2 ,

[
Iph − Ic −

Vc
Rp

Vc

]T
,

W2 ,

 −
∂Ic
∂Vc
−

1
Rp

0

ln
(
Iph − Ic −

Vc
Rp

)
1

 ,
K2 ,

[
κ3 κ4

]T
,
[
α −α ln (I0)

]T
.

As with the previous regressor, y2 andW2 are known from
the measured variables, and K2 is the unknown parameter.
In this case, however, the data points n = Nsc,Nsc+1, . . . ,N
are used to avoid singularity in the matrixW2 near the short-
circuit condition, as ∂Ic/∂Vc ≈ −1/Rp, resulting in a zero
row. Therefore, with this selected data range, singularity can
be avoided in the matrix W2 and consequently in RW2. The
squared error is calculated as

E2(K2) = Ry2 − 2RTWy2K2 + KT
2 RW2K2, (20)

where,

Ry2 =
N∑

n=Nsc

yT2 (n)y2(n),

RW2 =

N∑
n=Nsc

W T
2 (n)W2(n),

RWy2 =
N∑

n=Nsc

W T
2 (n)y2(n). (21)

Then, K2 can be found as

K2 = R−1W2RWy2, (22)

minimizing the squared error in (20), with the remaining
SSDM PVmodel parameters α = κ3 and I0 = exp (−κ4/κ3).
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IV. IMPLEMENTATION AND RESULTS
The proposed PV parameter identification approach is
demonstrated experimentally in this section. First, validation
metrics are defined, and then, the implementation procedure
is outlined to clarify and facilitate its practical application.
Next, the experimental setup is described, and the results are
detailed to discuss the effectiveness of the proposed method
using a microcontroller to perform the measurements and
calculations.

A. VALIDATION METRICS
The accuracy of the parameter identification method is val-
idated using three different metrics: an Error Index for each
identification model equation, the relative errors at the MPP
operating points, and a normalized relative error over the
current-source and voltage-source ranges.

The error index relates to the squared error in (10) and (20).
It determines whether the identified parameters provide a
good fit for the data, see [32]–[34], and is defined as

EI ,

√
E2(K∗)
E2(0)

=

√
Ry − 2RTwyK∗ + K∗TRWK∗

Ry
≤ 1.

(23)

where the squared error is evaluated with the estimated
parameter vector K = K∗ and compared to the squared error
if we arbitrarily select zeros as the estimated parameters. The
result should be less than one; otherwise the estimated value
is as good as any arbitrary set of parameters. Two error indices
with subscripts 1 and 2, are used for identification model
equations (13) and (22), respectively.

Also, the MPP is a key operating point, and a relative error
can be calculated as

RE =

∣∣∣∣xexp − xestxexp

∣∣∣∣× 100%, (24)

where, xexp represents the Vm, Im, and Pm obtained from the
measured data, and xest represents their estimated counter-
parts from the SSDM after the proposed parameter identifi-
cation is conducted.

Additionally, the normalized relative error (NRE) between
the collected I-V data and the estimated model curve can be
directly calculated [33], [35], and is defined as follows

ēx ,
1

N2 − N1

N2∑
n=N1

∣∣∣∣xact (nT )− xest (nT )xact (nT )

∣∣∣∣ , (25)

where, x is the state variable of interest, xest is its estimated
counterpart, and N1 and N2 are the start and end data points.
Specifically, two NRE values calculated, namely, ēI and
ēV corresponding to the current-source and voltage-source
regions, respectively. For ēI , data collection starts near the
short-circuit condition at N1 = 1 up to N2 = NMPP, while
for ēV , the voltage-source region starts at N1 = NMPP up
to N2 = N . That is, the MPP is included in both NRE
calculations.

FIGURE 5. Experiment setup.

B. PARAMETER IDENTIFICATION STEPS
The online implementation of the parameter identification
method is summarized as follows:

1) Collect I [n] and V [n] for data points n = 1 to N . E.g.,
vary the duty ratio D of the boost converter over its
online operational range D ∈ [Dmin,Dmax] in incre-
ments Dinc = (Dmax − Dmin)/N .

2) Apply a low pass filter on the data, to remove the impact
of the boost converter PWM and measurement noise.

3) Determine the range of filtered data n = 1 to n =
Nsc near the short-circuit operating point, e.g., all data
points from I [1] down to 90% of I [1], i.e., I [Nsc] ≈
0.90 I [1].

4) Use this data to calculateRy,RW y andRW in (10). Then,
find the parameters Iph and Rp using (13), and compute
EI1 to check that it is less than 1, see (23).

5) Use the range of of filtered data n = Nsc to N for
the second identification model by first calculating the
partial derivative ∂Ic/∂Vc using the center difference
approach at every n.

6) Then, use them along with the estimated Iph and Rp
to calculate Ry2, RWy2 and RW2 in (20) to find the
parameters α and I0 using (22) and compute EI2.

The parameter identification algorithm can be imple-
mented online in a DCMicrogrid for any PV DER module as
often as is necessary to keep track of changing temperature
and insolation conditions. Moreover, changes in the parame-
ters beyond a certain range, e.g., in Rp, can be used to detect
the end-of-life or degradation in the PV module.

C. EXPERIMENT: DC MICROGRID CONNECTED
PV MODULE
The experimental setup represents a PV DER connected
to the regulated bus of a DC Microgrid through a power
electronic converter. It consists of a PV module, eight halo-
gen lamps, a boost converter controlled by an Arm Cortex
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FIGURE 6. Equivalent circuit diagram of the experimental setup.

M3 microcontroller in an Arduino Due board, and a pro-
grammable DC voltage load. The setup is shown in Figure 5,
and its equivalent circuit diagram is depicted in Figure 6.
Specifically, the boost converter has an input capacitance
Cin = 47 µF, an output capacitance Cout = 470 µF, and
an inductance L = 250 µH. Note that the conditions of a
DC microgrid bus were created by setting the programmable
load to constant voltage load mode with Vbus = 24 Vdc, and
using an external 12 Vdc supply to consistently power the
microcontroller and its sensing circuit. The halogen lamps
are a cost-effective replacement for actual solar irradiance in
a lab setup, but are not identical to it. Specifically, there is
a higher proportion of photons in the infrared and red range
of the irradiance spectrum. Therefore, if the objective of the
setup is, for example, the certification of PV panels under
standard testing conditions (STC), halogen and LEDs can be
combined to construct a hybrid lamp as discussed in [36] for
a class A solar simulator. However, in this setup only halogen
lamps were used. Moreover, to create different insolation
levels, layers of sunshade film are placed directly on the PV
panel, and to create different PV panel temperature conditions
two variable speed fans are placed at opposite sides of the
setup. A USST50-36M monocrystalline PV panel is used,
which provides 50 watts maximum power at STC. Table 2
shows the electrical characteristics and specifications of the
solar panel. The sensors used were a voltage and current
sensor at the input (PV Panel) side of the converter and a
digital temperature sensor (DS18B20) that was placed below
the panel to record the junction temperature (not needed
by the algorithm). Moreover, the insolation was calculated
using the direct proportionality relationship between Isc and
S, that is, the estimated Isc = Iph in the SSDM is used to get an
approximate value for the insolation (as Isc slightly increases
with temperature) as follows

S ≈
SSTC Isc
Isc,STC

. (26)

TABLE 2. Electrical characteristics of the USST50-36M PV module.

The proposed parameter identification algorithm was
implemented on the microcontroller by first varying the duty
ratio of the boost converter from 0% to 99% and collecting
N = 1000, I and V data points. The PWM frequency was set
to fPWM = 64kHz with a controller time of Tcon = 0.5ms
between duty ratio changes, i.e., fcon = 2kHz. A second
order discrete-time low pass Butterworth filter was applied
to the collected data series, once forward and then reverse to
eliminate any phase shift, see for example the filtfilt
function in the MATLAB software environment. Then, the
remaining steps were carried out, as outlined previously,
under three different operating conditions of insolation and
temperature. Specifically, in case 1 S = 0.57 kW/m2, T =
23◦C, in case 2 S = 0.45 kW/m2, T = 30◦C, and in case 3
S = 0.61 kW/m2, T = 36◦C. The collected and filtered
data, both I and V versus time, for the three cases are shown
in Figure 7.
The results of the parameter identification steps are listed

in Table 3. It can be seen from the results in the table that
the relative errors are very low. Specifically, in all cases at
the MPP they are less than 1.23% for Vm, 0.97% for Im, and
1.61% for Pm. Moreover, the maximum error indices for the
first and second identification models given in (13) and (22)
were EI1 = 0.0053 and EI2 = 0.2169, respectively, showing

TABLE 3. Detailed validation results of the experiment.
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FIGURE 7. Experimental V and I vs. time for all three cases, (a) case 1, (b) case 2, and (c) case 3.

FIGURE 8. Experimental data vs. estimated model for all three cases,
(a) I-V curves, and (b) P-V curves.

that the parameters resulted in a very good fit to the data used
in the estimation. In addition, the NRE in the current-source
region ēI is less than 0.4% for all three cases, demonstrating a

negligible discrepancy between the estimated model and the
collected (and filtered) data in this region. On the other hand,
the ēV reaches up to 1.43% (case 3) in the voltage-source
region as a result of ignoring Rs in the SSDM.
Furthermore, the estimated I-V and P-V model curves for

all three cases are plotted alongside the collected and filtered
experimental data in Figures 8a and 8b, respectively. It can
be seen that these curves are closely matched particularly
in the current-source region, around the MPP, and well into
the voltage-source region. This result is not obtainable in the
current-source region if Rp is ignored. However, the impact of
ignoring Rs in the SSDM equations is that there is a discern-
able discrepancy between the I-V curves of themeasurements
and estimated model in the voltage-source range near the Voc,
particularly in case 3. Therefore, the algorithm consistently
yields a closely matchedmodel for the collected experimental
data under each one of these varied conditions.

A noteworthy remark is that the majority of data points
obtained were in the current-source region in this DC Micro-
grid setup. In all three cases, Nsc is more than 800 data
points, i.e., the number of points from Isc down to 0.9Isc, see
Table 3. This is despite evenly varying the duty ratio of the
boost converter (in fixed increments) between 0 and 99% over
N = 1000 points. Therefore, the current-source region can
provide a wider practical range of operating points for the
control of the PV DER’s power output under these settings
compared to the voltage-source region.

In all cases, the model was successfully identified online in
under 1 second. In fact, it took only 0.11 seconds to perform
the filtering and identification calculations on the ArmCortex
M3microcontroller. This demonstrates the reliability and low
computational complexity of implementing this algorithm
online; which in turn facilitates frequently reapplying it in a
PV DER system as conditions change throughout the day.

V. CONCLUSION
A non-iterative parameter identification method was devel-
oped in this work for PV modules and implemented on the
restricted online operation scenario where they are connected
to regulated DC Microgrids. The practical restrictions in the
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time allowed for data collection and parameter identification,
and the low complexity (in time and memory) required for it
to be implemented online on themicrocontroller of a PVDER
system were addressed. Validation steps were undertaken in
an experimental setup, where an accurate estimate of the
I-V and P-V characteristic curves was achieved. Specifically,
relative errors that are less than 1.6% where recorded in
calculating Pm, and a total execution time of 0.73 seconds on
an ArmCortexM3microcontroller was consistently achieved
under different temperature and insolation conditions. Future
work can focus on adopting the proposed method in DER
controllers to accurately and quickly target specific power
output levels in DC Microgrids. This would enhance DC
Microgrids, encouraging their adoption as a reliable and effi-
cient paradigm in smart grids. In addition, more work could
focus on the development of a similar non-iterative method
for the full SDM, i.e., with Rs, or higher order models.
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