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Abstract: In addition to its role in bone health, vitamin D (VitD) has been implicated in several
pathological conditions. Specifically, VitD deficiency has been linked to an increased risk of dyslipi-
demia. Atherogenic dyslipidemia is characterized by increased low-density lipoprotein-cholesterol
(LDL-C) and decreased high-density lipoprotein-cholesterol (HDL-C). In this study, we examined
the association of six single nucleotide polymorphisms (SNPs) in VitD-related genes with VitD and
lipid levels, in a cohort of 460 Lebanese participants free from chronic diseases. Our results showed
no association of the examined SNPs with VitD concentrations. However, the presence of the minor
allele in rs10741657G>A of CYP2R1 was associated with increased levels in LDL-C (β = 4.95, p = 0.04)]
and decreased levels in HDL-C (β = −1.76, p = 0.007)]. Interestingly, rs10741657G>A interacted
with gender to increase LDL-C levels in females (β = 6.73 and p = 0.03) and decrease HDL-C levels
in males HDL-C (β = −1.09, p = 0.009). In conclusion, our results suggest that rs10741657 G>A in
CYP2R1 is associated with circulating LDL-C and HDL-C levels in a Lebanese cohort. Although this
association was gender-specific, where rs10741657G>A was associated with increased LDL in females
and decreased HDL in males, the presence of the minor allele A was associated with increased
cardiovascular risk in both genders. These findings need to be validated in a larger population.
Further investigations are warranted to elucidate the molecular mechanism of VitD polymorphism
and dyslipidemia.

Keywords: vitamin D; CYP2R1; rs10741657; LDL cholesterol; HDL cholesterol; single nucleotide
polymorphisms; association analysis

1. Introduction

In addition to its major role in skeletal health, vitamin D (VitD) has been implicated
in several pathological conditions [1,2]. Indeed, VitD deficiency has been suggested to
contribute to the pathogenesis of many disorders, including autoimmune, infectious, and
cardiovascular diseases [1–5]. Noticeably, VitD deficiency has been linked to an increased
risk for dyslipidemia [6–8]. Atherogenic dyslipidemia is characterized by increased low-
density lipoprotein-cholesterol (LDL-C) and decreased high-density lipoprotein-cholesterol
(HDL-C).

Exposure to sunlight converts 7-dehydrocholesterol (7-DHC) in the skin to vita-
min D [9]. Vitamin D binding protein [10] (VDBP) transports VitD to the liver, where
it is hydroxylated by the liver enzyme 25-hydroxylase (CYP2R1) to its main circulating
form 25-hydroxyvitamin D [25(OH)D] [11,12]. It has been well established that circulating
levels of 25(OH)D are influenced by a multitude of factors, including age, gender, diet,
supplementation, sun exposure, latitude, and race [13–19]. More recently, significant at-
tention has been given to the genetic determinants of VitD status. Indeed, genome-wide
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association studies [20–22] have demonstrated that polymorphic loci in or near genes
encoding for VitD related proteins are associated with 25-(OH) D concentrations. These
loci include the CYP2R1 gene, the GC gene encoding for VDBP, and the NADSYN1/DHCR7
gene region. However, studies on these genetic associations remain scarce in the Mediter-
ranean region. Based on the above, we aimed to study the effect of six single nucleotide
polymorphisms (SNPs) in CYP2R1, GC, and NADSYN1/DHCR7 on VitD concentrations in
460 Lebanese individuals free of chronic disease. We also investigated the association of
these SNPs with levels of low-density lipoprotein-cholesterol (LDL-C) and high-density
lipoprotein-cholesterol (HDL-C).

2. Materials and Methods
2.1. Study Participants

This cross-sectional study was conducted on 460 unrelated Lebanese individuals.
Participants were recruited from a major tertiary care hospital in Lebanon between 2015
and 2016. Individuals with a diagnosis of cardiovascular disease or cancer were excluded
from the study.

2.2. Ethical Statement and Recruitment

This study adhered to the latest version of the Declaration of Helsinki for Ethical Princi-
ples for Medical Research Involving Human Subjects during recruitment and data collection
procedures. The Institutional Review Board of the Beirut Arab University approved the
study (2019-H-0091-HS-R-0360). Informed consent was obtained from all participants.

2.3. Clinical, Biological, and Genetic Data

A questionnaire was used to assess the socio-demographic data. Measurements of
serum concentrations of 25(OH)D and lipid profile were performed using commercial kits
(Roche Diagnostics, Basel, Switzerland).

Peripheral blood samples drawn in EDTA tubes were used to extract the genomic DNA
(QIAamp DNA blood mini kit, Qiagen, Hilden, Germany). All samples were genotyped
using a Kompetitive allele-specific PCR as described previously [23] for rs10741657G>A in
CYP2R1, rs12785878 T>G, rs4423214 T>C, rs4944062T>G in NADSYN1/DHCR7, and rs4588
C>A, rs2282679 A>C in GC.

2.4. Statistical Analysis

SPSS Statistics software was used to perform the statistical analysis (Version 22.0,
Armonk, NY, USA). Scale and categorical variables were presented as mean ± standard
deviations and numbers followed by percentages, respectively. A Chi-square test was used
to determine if the genotypes were in Hardy–Weinberg equilibrium. Multivariate linear
regression analysis (adjusted for physical activity, body mass index, smoking, age, and
gender) was used to study the association between rs10741657G>A in CYP2R1 and the
lipid profile. An interaction between rs10741657G>A x gender on lipid profile was also
assessed. The additive model was tested, and the significance level was set at p < 0.05.

3. Results

The demographic, clinical, and genetic characteristics of our participants are shown in
Table 1. There was no significant difference in the age of males versus females (Table 1).
Men had significantly higher BMI than women, while women had higher levels of total
cholesterol, HDL-C, LDL-C, and circulating 25(OH)D than men (Table 1). The genotypic
distribution of the studied SNPs was in agreement with the Hardy-Weinberg equilibrium
(Table 1). No significant difference was found in the distribution of the 6 SNPs between
males and females (Table 1, p > 0.05).
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Table 1. Demographic, clinical, and genetic characteristics of the study participants.

Total Female Mean
(SD)

Male Mean
(SD) p

N = 460 N = 292 N = 168

Age 40.60 (14.16) 39.80 (12.85) 41.98 (16.13) 0.1118
BMI (Kg/m2) 25.71 (4.98) 24.53 (4.56) 27.78 (5.02) <0.001

Total cholesterol (mg/dl) 181.41 (40.94) 185.86 (40.68) 173.69 (40.36) 0.0021
HDL-C (mg/dl) 45.54 (14.61) 48.46 (14.71) 40.45 (12.97) <0.001
LDL-C (mg/dl) 117.39 (33.52) 120.28 (34.10) 112.37 (31.99) 0.0147

25(OH)D (ng/mL) 24.53 (13.81) 25.62 (17.56) 22.64 (9.26) 0.0253

Genotype
rs10741657G>A in

CYP2R1
GG 206 (50.4) 129 (50.4) 77 (50.3)

0.71AG 165 (40.3) 101 (39.5) 64 (41.8)
AA 38 (9.3) 26 (10.3) 12 (7.8)

rs12785878T>G in
NADSYN1/DHCR7

TT 116 (27.0) 73 (26.8) 43 (27.4)
0.77GT 211 (49.2) 137 (50.4) 74 (47.1)

GG 102 (23.8) 62 (22.8) 40 (25.5)

rs4588C>A in GC
CC 267 (62.2) 166 (61.3) 101 (63.9)

0.48AC 140 (32.6) 93 (34.3) 47 (29.7)
AA 22 (5.1) 12 (4.4) 10 (6.3)

rs2282679A>C in GC
AA 272 (62.5) 172 (62.1) 100 (63.3)

0.35CA 143 (32.9) 95 (34.3) 48 (30.4)
CC 20 (4.6) 10 (3.6) 10 (6.3)

rs4423214T>C in
NADSYN1/DHCR7

TT 114 (26.4) 73 (26.4) 41 (26.5)
0.74CT 215 (49.8) 141 (50.9) 74 (47.7)

CC 103 (23.8) 63 (22.7) 40 (25.8)

rs4944062T>G in
NADSYN1/DHCR7

TT 115 (27.3) 74 (27.4) 41 (27.0)
0.54GT 211 (50.0) 139 (51.5) 72 (47.4)

GG 96 (22.7) 57 (21.1) 39 (25.7)
Values were arithmetic mean ± standard deviation for scale variables. Categorical variables were shown as
numbers and percentages. BMI: body mass index, HDL-C: High-density lipoprotein cholesterol, LDL-C: Low-
density lipoprotein cholesterol, VitD: Vitamin D.

Among the tested SNPs, only the A allele of rs10741657G>A in CYP2R1 was associated
with increased levels of LDL-C (β = 4.95, p = 0.04, Table 2), and decreased levels of HDL-C
(β = −1.76, p = 0.007, Table 2). As expected, age, gender, smoking, and physical activity
showed significant associations (p < 0.05, Table 2).
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Table 2. Multivariate linear regression analysis with low- and high-density lipoproteins cholesterol.

LDL-C

β (95%CI) p-Value

rs10741657A 4.95 (0.20; 9.70) 0.04
Age 0.54 (0.32; 0.76) <0.0001

Physical activity
<1 week Reference
1 week −1.39 (−1.06; −1.72) <0.0001

Gender
Female Reference
Male −1.40 (−1.84; −1.96) 0.004

Smoking
No Reference
Yes −1.41 (−1.97; −1.86) 0.003

HDL-C

rs10741657A −1.76 (−1.76; −1.77) 0.007
Gender

Female Reference
Male −1.37 (−1.24; −1.50) <0.0001

Smoking
No Reference
Yes 3.57 (2.10; 5.06) <0.0001

BMI −1.43 (−1.71; −1.15) 0.003
β: regression coefficient, LDL-C: low-density lipoprotein cholesterol, HDL-C: high-density lipoproteins cholesterol.
R2 for LDL-C model is: 0.109, R2 for HDL-C model is: 0.113.

In order to examine whether rs10741657G>A in CYP2R1 and gender may indirectly
influence lipid levels, we tested their interaction on LDL-C, HDL-C using multivariate
linear regression models (Tables 3 and 4). Interestingly, rs10741657A was associated with
an increased risk of high LDL-C in females (β = 6.73 and p = 0.03) but not in males (Table 3).
Age was significantly associated with LDL-C levels in both males (p = 0.001) and females
(p = 0.01). Alcohol consumption was associated with decreased LDL-C in males only
(p = 0.002). Physical activity was associated with decreased LDL-C in females only. BMI
was conversely associated with LDL-C in females (p < 0.0001) (Table 3).

Table 3. Interaction analysis between rs10741657 and gender on low-density lipoprotein cholesterol,
using stepwise regression model.

LDL-C

β (95%CI) p-Value

Male
rs10741657 1.03 (−1.89; 7.96) 0.77
Age 0.47 (0.19; 0.75) 0.001

Alcohol
No Reference
Yes −1.25 (−1.80; −1.69) 0.002

Female
rs10741657 6.73 (0.61; 12.86) 0.03
Age 0.41 (0.09; 0.73) 0.01

Physical activity
<1 week Reference
1 week −1.88 (−1.47; −1.29) <0.0001
>1 week −1.38 (−1.04; −1.73) 0.02

BMI −1.75 (−1.66; −1.84) <0.0001

rs10741657*gender interaction 0.005
Factors included in the model were age, gender, physical activity, alcohol consumption, and BMI. Variables
significant at stepwise analysis were reported in the table. β: regression coefficient, LDL-C: low-density lipoprotein
cholesterol, BMI: body mass index. R2 for male model is: 0.153, R2 for female model is: 0.141, R2 for interaction
model is: 0.108.
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Table 4. Interaction analysis between rs10741657 and gender on high-density lipoprotein choles-
terol levels.

HDL-C

β (95%CI) p-Value

Male
rs10741657 −1.09 (−1.15; −1.04) 0.009
Age 0.18 (0.06; 0.30) 0.004

smoking
No Reference
Yes 4.04 (1.65; 6.44) 0.001

BMI −1.48 (−1.89; −1.08) 0.02

Female
rs10741657 −1.77 (−1.32; 0.77) 0.17
Age −1.23 (−1.36; −1.10) 0.001

smoking
No Reference
Yes 3.79 (1.89; 5.69) <0.0001

BMI −1.39 (−1.77; −1.01) 0.04

rs10741657A*gender
interaction <0.0001

Factors included in the model were age, gender, physical activity, alcohol consumption, and BMI. Variables
significant at stepwise analysis were reported in the table. β: regression coefficient, DL-C: high-density lipoproteins
cholesterol, BMI: body mass index. R2 for interaction model is: 0.145, R2 for male model is: 0.192, R2 for female
model is: 0.105.

Interestingly, when stratified according to gender, rs10741657A was associated with
decreased levels of HDL-C in males (β = −1.09, p = 0.009) (Table 4). On the other hand, age
was associated with increased HDL-C in males (p = 0.004) and decreased HLD-C levels in
females (p = 0.001). Smoking was associated with increased HDL-C levels in both males
(p = 0.001) and in females (p < 0.0001). BMI was associated with decreased HDL-C in both
males (p = 0.02) and females (p = 0.04) (Table 4).

4. Discussion

Our results showed no association of VitD concentrations with the examined SNPs in
the studied Lebanese population. However, we found that rs10741657A in CYP2R1 was
associated with increased levels of LDL-C and decreased levels of HDL-C. The stratification
according to gender revealed that rs10741657A interacted with gender to increase LDL-C
levels in females and decrease HDL-C levels in males. Although this association may
appear to be gender-specific, the outcome is comparable since dyslipidemia is characterized
by increased low-density lipoprotein-cholesterol (LDL-C) and decreased high-density
lipoprotein-cholesterol (HDL-C). This finding is comparable to a Finnish study, where
another SNP of CYP2R1, rs12794714, was associated with LDL-C [24].

It is worth noting that this study is limited by its small sample size; replication studies
in a larger cohort are warranted. Another limitation is the lack of information on the diet of
the participants and other confounding factors such as the season of sample collection.

As mentioned earlier, our analysis did not show an association between VitD con-
centrations and the examined SNPs. This finding is in line with a study on a British
population [25] where none of the studied SNPs was associated with VitD concentrations.
Although Arabi et al. demonstrated a gender-specific association between rs10741657G>A
in CYP2R1 and the VitD status of a Lebanese cohort [26], this discrepancy might be due
to the small sample size and the sampling conditions where the level of vitamin D is
influenced by seasonal variation [27,28].

Herein, we found that rs10741657G>A in the gene involved in the hydroxylation
activity of VitD affects the level of cholesterol by increasing LDL-C and decreasing HDL-C.
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In the interpretation of these results, it is worth noting that VitD and cholesterol metabolism
are related since both molecules share a common metabolic substrate, 7-DHC. Indeed, in
the final step of cholesterol biosynthesis, 7-DHC is converted to cholesterol by 7-DHCR;
alternatively, 7-DHC could be converted to VitD in the skin upon sun exposure.

In conclusion, our results suggest that rs10741657A in CYP2R1 is associated with cir-
culating LDL-C and HDL-C levels. Although the association appears to be gender-specific,
where rs10741657G>A was associated with increased LDL in females, and decreased HDL
in males, the presence of the minor allele was associated with increased cardiovascular risk
in both genders. These findings need to be validated in a larger population. Further investi-
gations are needed to elucidate the association of VitD polymorphism with dyslipidemia.
Understanding this relationship may allow the development of dietary interventions that
could reduce the risk of developing dyslipidemia.
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