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A B S T R A C T

I develop and estimate an affine short-rate model that incorporates a nonstationary stochastic
mean. In my model, the time-varying stochastic mean is subject to a sequence of permanent
shocks that can better capture the source of nonlinearity in the drift than existing models. I find
that the proposed model provides a better in-sample and out-of-sample fit to observed interest
rates and bond prices relative to extant models. More specifically, my model outperforms
constant elasticity of volatility models. It follows that the nonstationary stochastic mean model
offers new insights to the implied bond option valuation and accounts for the downward bias
in bond option prices generally documented in the literature.

1. Introduction

In the finance literature, the diffusion process has commonly been used to model the stochastic dynamics of interest rates
following the work of Vasicek (1977) and Cox et al. (1985). A prominent empirical finding in this literature is that models that
allow the volatility of interest rates to be heteroskedastic and highly sensitive to interest rate changes are superior to mean reverting
models (Chan et al., 1992, hereafter CKLS). In addition to the mean reverting models being rejected, it is often found that the drift
term of the stochastic process of interest rates is nonlinear, (e.g., Aït-Sahalia, 1996a).

In this paper, I consider the view of interest rates proposed by Fama (2006) who asserts the following in the context of the
forecasting power of forward rates for spot rates: ‘‘The inference that this forecast power is due to mean reversion of the spot rate
toward a constant expected value no longer seems valid. Instead, the predictability of the spot rate captured by forward rates seems
to be due to mean reversion toward a time-varying expected value that is subject to a sequence of apparently permanent shocks that
are on balance positive to mid-1981 and on balance negative thereafter’’ (p. 1). Cochrane and Piazzesi (2005) find that time-varying
bond risk premiums and excess returns are largely unexplained by the information contained in the yield curve; a study by Cieslak
and Povala (2015) demonstrates that expected inflation contains substantial predictive power for excess bond returns beyond the
level, slope, and curvature of the yield curve. Duffee (2018) documents that expected inflation shocks accounts for up to 20% of
variances of bond yields. A paper by Cooper and Priestley (2008) documents how the output gap contains substantial predictive
power for excess bond returns, while Greenwood and Vayanos (2014) observe that measures of Treasury bond supply also help
predict excess returns. Moreover, Joslin et al. (2014) argue that macroeconomic fundamentals like economic growth and inflation
are important factors that can predict excess returns.2 In line with this perspective, I modify the Vasicek model of interest rates by
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incorporating a nonstationary stochastic mean that allows for a time-varying expected value and possible nonlinearity in the drift
function.3 My proposed model differs from existing models such as Balduzzi et al. (1998) and Cai and Swanson (2011), in which
they assume that interest rates revert to a stationary moving mean.4 I find that my model provides a better fit to observed interest
rates relative to a large number of alternative models. I derive the implied bond option price from my model, and show that it
mitigates the downward bias in existing bond option valuation models.

The evolution of the literature on estimating spot interest rates falls into two broad classes: (1) the estimation bias and (2) the
specification bias. The first class, estimation bias, comprises econometric measurement problems related to discretization bias and
possible finite sample bias. Discretization bias arises when one estimates continuous time models with data that are in discrete-
time. Influential contributions include the Generalized Method of Moments (Hansen and Scheinkman, 1995), Efficient Method of
Moments (Gallant and Tauchen, 1996), Approximate Maximum Likelihood (Aït-Sahalia, 2002), and GMM with random parameters
(Aït-Sahalia and Mykland, 2003). On the other hand, finite sample bias arises when the asymptotic distribution of the estimator
tends to be a poor approximation of the finite sample distribution. Important contributions include the Jackknife Method (Phillips
and Yu, 2005), the Parametric Bootstrap Method (Tang and Chen, 2009), and Least Square Bias Approximation (Yu, 2012).

The second class, specification bias, arises from the findings of CKLS that the mean reversion parameter is insignificant and the
volatility parameter is the cornerstone in model specification. Using a nonparametric test based on Hermite polynomials, Aït-Sahalia
(1996a) provides evidence that the drift function is nonlinear and concludes that the drift is more critical than the volatility in model
specification. The same conclusion is also documented by Stanton (1997), Jiang (1998), and Al-Zoubi (2009). However, Chapman
and Pearson (2000) show that even when the true model has a linear drift, the nonparametric test used in Aït-Sahalia (1996b)
tends to generate nonlinearities in the drift function. Hong and Li (2005) correct a boundary bias in the Aït-Sahalia (1996b) test
and strongly reject all mean-reverting models. They conclude that nonlinear drift specification does not improve the goodness of
fit. However, Arapis and Gao (2006) propose a specification test for linearity in the drift and conclude that nonlinear drift plays a
prominent role in derivatives pricing.

My estimation using a nonstationary mean for the spot rate involves comparing the proposed model with five affine term structure
models for interest rates. My main finding is that the nonstationary time-varying mean model is better able to capture the interest
rate, both in stable and unstable periods. In fact, the fits of existing models are sample dependent and the volatility function seems to
be a critical component only in unstable periods. However, when the nonstationary mean is included in the model, with or without a
correction for small-sample bias, the particular specification of the volatility function is less crucial. This result differs from Durham
(2003) and Chan et al. (1992), who find that the behavior of interest rate is better captured by the constant elasticity of volatility
(CEV) models. Basically, the advantage of CEV models is that they better capture the nonstationary mean during unstable periods.
Interestingly, this benefit disappears against my proposed nonstationary mean model.

Within the same CEV specification, Aït-Sahalia (1996a) introduces a nonlinear mean-reverting model of interest rates with
constant elasticity of volatility. His model allows for slow mean reversion while interest rates are in the middle of a band and
strong nonlinear mean reversion while they are out of the band. I find significant evidence of nonlinearity in the drift. In fact, I find
that the nonlinearity in the drift relies crucially on the direction in which interest rates move. In the recent period of low interest
rates, I find largely modest evidence that the interest rate tends to revert strongly to its mean. Specifically, for periods of stable
interest rates, when interest rate values are very low, a non-linear, mean-reverting model generates significant pricing errors.

My results are in line with the opportunistic approach to monetary policy developed by Orphanides and Wilcox (2002) and Aksoy
et al. (2006), in which out-of-the-band inflation stimulates opportunistic policy action that re-enforces nonlinear mean reversion in
the interest rate. However, when inflation is modest but still above the long-run target, the Fed does not take pro-active anti-inflation
action, but waits for external forces such as beneficial supply shocks and unanticipated recessions to achieve the preferred level of
inflation. Such policy is consistent with ‘‘a policy-inaction band’’ in which the interest rate exhibits weak or no mean reversion.5
In contrast, out-of-the-band inflation stimulates opportunistic policy action that produces strong nonlinear mean reversion in the
interest rate. In short, an additional benefit of models with nonstationary stochastic mean is that they better capture nonlinearities
in the interest rate due to opportunistic monetary policies.

My analytic formulas for bond and bond option prices under my stochastic mean framework significantly attenuate the downward
bias in bond option prices that is documented, for example, by Phillips and Yu (2005) and Tang and Chen (2009). In fact, my model
reduces the bias in bond prices by 62%–64% and the bias in option prices by 18.5%–65% compared to the standard Vasicek (1977)
model. My analysis indicates that non-stationarity in the short rate’s mean is the primary reason for the downward bias inherent in
existing bond option pricing models.

The remainder of the paper is as follows. Section 2 develops the dynamics of interest rates with nonstationary mean and
introduces bond prices under my proposed framework. Section 3 reviews continuous time models to be considered. Section 4 outlines
the data, details the specification tests used to select the best model, analyzes interest rate dynamics, and reports parameter estimates.
Section 5 estimates bond and option prices using spot rates with nonstationary mean. Section 6 concludes.

3 Bandi (2002) provides evidence that the interest rate displays martingale behavior over a range between 3% and 15%. Yu (2012) documents slow mean
reversion in interest rates and shows that the nonlinear term suggested by Aït-Sahalia (1996a) is important in the near unit root situation. The slow mean
reversion process is also studied by Bandi (2002) and Yu (2012).

4 Duffee (2002) documents that the random walk forecasts outperform those from the Dai and Singleton (2000) affine model. Duffee (2011) finds that a
term structure model that imposes a random walk component is superior to existing term structure models.

5 Kozicki and Tinsley (2001) find that persistent interest rates results from historical shifts in market perceptions of the policy targeting inflation.
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2. A continuous time interest rate model with I(2) component

In this section, I develop analytic expressions for the spot rates and for the bond price. Both expressions are articulated in terms
of an continuous-time analogue of the integrated Gaussian unit root, I(2), process. I refer to continuous time interest rate model
with I(2) component as the HZ model.

2.1. Interest rate dynamics under nonstationary mean

In my model, the spot rate, 𝑟𝑡, has a permanent component that is an integrated random walk process. Following Ravn and Uhlig
(2002), the general representation of the nonstationary stochastic mean, 𝜇𝑡, can be written as

𝑑𝜇𝑡 = 𝜗𝑡𝑑𝑡, 𝑑𝜗𝑡 = 𝜎𝜇𝑑𝑊𝑡 (1)

My model, as of most of the models in this area, is within the affine framework characterized by Duffie and Kan (1996).
Uncertainty is generated by n independent Brownian motions. The instantaneous interest rate, denoted 𝑟̇𝑡, is affine in the state:

𝑟̇𝑡 = 𝛿0 + 𝛿𝑟𝑡

The equivalent martingale measure of 𝑟𝑡 determines the bond price. The risk-neutral dynamics of the interest rate are

𝑑𝑟𝑡 = 𝛽
(

𝑟𝑡 − 𝜇𝑡
)

𝑑𝑡 + 𝜎𝑑𝑍𝑡 (2)

𝑑𝜇𝑡 = 𝜗𝑡𝑑𝑡, 𝑑𝜗𝑡 = 𝜎𝜇𝑑𝑊𝑡

where 𝑑𝑍𝑡 and 𝑑𝑊𝑡 are two independent Brownian motions. Note that under the physical measure the dynamics of 𝜇𝑡 are also
Gaussian. I follow Ravn and Uhlig (2002) and McElroy and Trimbur (2007) in approximating the nonstationary mean in (2) by
solving

𝑎𝑟𝑔𝑚𝑖𝑛
𝜇𝜔

{ 𝑇
∑

𝑡=1

[

𝑟𝑡 − 𝜇𝑡
]2 + (1∕𝑞)∫

𝜔

𝜑

[

𝐷2𝜇𝑢
]2 𝑑𝑢

}

, 𝑞 > 0 (3)

where 𝐷2𝜇𝑢 denotes the second derivative of the function D over the space of all functions on the interval [𝜑,𝜔]. The irregular
component

(

𝑟𝑡 − 𝜇𝑡
)

of the objective function mimics the mean reversion of the expected return on bonds which is due to mean
reversion in expected rate of inflation as in Fama (2006). The second term (1∕𝑞) ∫ 𝜔𝜑

[

𝐷2𝜇𝑢
]2 𝑑𝑢 mimics the permanent shocks in

the mean which is due to occasional Federal Reserve actions to control the interest rate. The parameter, 𝑞 ≥ 0, determines the
smoothness of the nonstationary stochastic mean.6

Following McElroy and Trimbur (2007), I may write the differentiated stochastic mean and spot rate as:

𝑑2𝜇𝑡 = 𝜂𝑡,

𝑤𝑡 = 𝑑2𝑟𝑡 = 𝜂𝑡 + 𝑑2
(

𝑟𝑡−𝜇𝑡
)

= 𝜂𝑡 + 𝑑2
(

𝑐𝑡
)

,

where 𝜂𝑡 is a white noise uncorrelated with the stationary component of interest rate 𝑐𝑡 = 𝑟𝑡 − 𝜇𝑡.
Therefore,

𝜎2 = 𝜎2𝜇 + 𝜎
2
𝑐 , (4)

𝜎2𝑐 =
𝜎2
𝐷2𝜇

𝑞
.

Following McElroy and Trimbur (2011), I derive the continuous time version of the filter on the basis of signal extraction theory.
Let L be the continuous-time lag operator defined by 𝐿𝑥𝑟 (𝑡) = 𝑟 (𝑡 − 𝑥) for any x and for all times. Let 𝑒−𝜆𝑖 be a frequency response
function, observed at point i. The associated spectral densities of the differentiated stochastic mean and interest rate are

𝑓𝑢 (𝜆) = 𝑞𝜎2𝑐 , 𝑓𝑤 (𝜆) = 𝑓𝑢 (𝜆) + 𝜆4𝜎2𝑐 =
(

𝑞 + 𝜆4
)

𝜎2𝑐 .

The frequency response of the stationary component is given by the ratio
(

1 + 𝑞∕𝜆4
)−1 and the stationary spectrum is given by

𝜎2𝑐
(

1 + 𝑞∕𝜆4
)−1. Taking the inverse Fourier transformation of the spectrum gives the weighting kernel

𝜓 (𝑥) =
𝑞1∕4 exp

{

− |𝑥| 𝑞1∕4∕
√

2
}

2
√

2

(

cos
(

|𝑥| 𝑞1∕4∕
√

2
)

+ sin
(

|𝑥| 𝑞1∕4∕
√

2
))

.

I move on to state the limiting distribution of the spot rate

6 Note that the model corresponds to the smoothing polynomial splines of Wecker and Ansley (1983) where the first derivative is continuous and the second
derivative square is integrable.
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Proposition 2.1. Let 𝑟𝑡 be given by (2), the expected value and variance of the spot rate are given by

𝐸
[

𝑟𝑡
]

= 𝑒𝛽𝑡
[

𝑟0 + 𝐸
[

𝜇𝑡
] (

𝑒−𝛽𝑡 − 1
)]

and

𝑉 𝑎𝑟
(

𝑟𝑡
)

= 1
2
𝜎2𝑚𝑒

2𝛽 𝑡2 + 𝜎2
(

1 − 𝑒2𝛽𝑡
−2𝛽

)

Proof. Applying Ito’s lemma I have that

𝑟𝑡 = 𝑒𝛽𝑡
[

𝑟0 − ∫

𝑡

0
𝛽𝜇𝑡𝑒

−𝛽𝑢𝑑𝑢 + 𝜎 ∫

𝑡

0
𝑒−𝛽𝑢𝑑𝑍𝑢

]

.

Using integration by parts for the second term it follows that

𝑟𝑡 = 𝑒𝛽𝑡
[

𝑟0 − 𝛽𝜇𝑡 ∫

𝑡

0
𝑒−𝛽𝑢𝑑𝑢 + 𝛽 ∫

𝑡

0
𝑑𝜇𝑡

(

∫

𝑡

0
𝑒−𝛽𝑡𝑑𝑡

)

𝑑𝑢 + 𝜎 ∫

𝑡

0
𝑒−𝛽𝑢𝑑𝑍𝑢

]

= 𝑒𝛽𝑡
[

𝑟0 + 𝜇𝑡
(

𝑒−𝛽𝑡 − 1
)

− ∫

𝑡

0
𝜗𝑡𝑑𝑢

(

𝑒−𝛽𝑡 − 1
)

𝑑𝑢 + 𝜎 ∫

𝑡

0
𝑒−𝛽𝑢𝑑𝑍𝑢

]

= 𝑒𝛽𝑡
[

𝑟0 + 𝜇𝑡
(

𝑒−𝛽𝑡 − 1
)

+ 𝜎 ∫

𝑡

0
𝑒−𝛽𝑢𝑑𝑍𝑢

]

.

𝐸
[

𝑟𝑡
]

= 𝑒𝛽𝑡
[

𝑟0 + 𝐸
[

𝜇𝑡
] (

𝑒−𝛽𝑡 − 1
)

+ 𝐸
[

𝜎 ∫

𝑡

0
𝑒−𝛽𝑢𝑑𝑍𝑢

]]

By Ito’s isometry I have that,

𝐸
[

𝑟𝑡
]

= 𝑒𝛽𝑡
[

𝑟0 + 𝐸
[

𝜇𝑡
] (

𝑒−𝛽𝑡 − 1
)]

.

The variances of the permanent and transitory components can be written as,

𝐶𝑜𝑣
[

𝜇𝑡, 𝜇𝑢
]

= 𝜎2𝑚𝐸
[

∫

𝑡

0 ∫

𝑡

0
𝑑𝑊𝑠 ∫

𝑢

0 ∫

𝑢

0
𝑑𝑊𝑠

]

. Thus,

𝑉 𝑎𝑟
(

𝜇𝑡
)

= 𝜎2𝑚

[

∫

𝑡

0 ∫

𝑡

0
𝑑𝑠

]

= 𝜎2𝑚 ∫

𝑡

0
(𝑡𝛬𝑢) = 𝜎2𝑚

𝑡2

2
, and

𝑉 𝑎𝑟
(

𝜇𝑡
(

𝑒−𝛽𝑡 − 1
))

= 𝜎2𝑚

[

∫

𝑡

0 ∫

𝑡

0
𝑑𝑠

]

= 𝜎2𝑚 ∫

𝑡

0
(𝑡𝛬𝑢) = 1

2
𝜎2𝑚𝑡

2𝑒𝛽𝑡,

𝑉 𝑎𝑟
(

𝜎 ∫

𝑡

0
𝑒−𝛽𝑢𝑑𝑍𝑢

)

= 𝜎2
(

1 − 𝑒2𝛽𝑡
−2𝛽

)

.

2.2. Bond price with a nonstationary I(2) mean

Proposition 2.2. Let𝑃 (𝑡, 𝑇 ) denotes the price of a zero-coupon bond and let 𝑇 be the maturity of that bond. The risk neutral bond price is

𝑃
(

𝑡, 𝑇 , 𝑟𝑡
)

= 𝐸𝑥𝑝
([

−∫

𝑇

𝑡
𝑟𝑢
(

𝑟𝑡
)

𝑑𝑢
]

+ 1
2
𝑉 𝑎𝑟

[

−∫

𝑇

𝑡
𝑟𝑢
(

𝑟𝑡
)

𝑑𝑢
])

= 𝐸𝑥𝑝
(

𝐴 (𝑡, 𝑇 ) 𝑟𝑡 − 𝜇𝑡 (𝐴 (𝑡, 𝑇 ) + (𝑇 − 𝑡)) + 𝐵 (𝑡, 𝑇 ) +𝐷 (𝑡, 𝑇 )
)

,

where

𝐴 (𝑡, 𝑇 ) ≡
(

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

)

,

𝐵 (𝑡, 𝑇 ) = 𝜎2

2𝛽2 (1 + 𝑞)
(𝐴 (𝑡, 𝑇 ) + (𝑇 − 𝑡)) +

𝜎2𝐴 (𝑡, 𝑇 )2

4𝛽 (1 + 𝑞)
,

and

𝐷 (𝑡, 𝑇 ) =
𝑞𝜎2 (𝑇 − 𝑡)4

48 (1 + 𝑞)

= 𝐸𝑥𝑝
((

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

)

𝑟𝑡 +
(

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

+ (𝑇 − 𝑡)
)

𝜇𝑡 +
𝜎2

2𝛽2 (1 + 𝑞)

(

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

)

+ 𝜎2

2𝛽2 (1 + 𝑞)
(𝑇 − 𝑡) + 𝜎2

4𝛽 (1 + 𝑞)

(

1 − 2𝑒𝛽(𝑇−𝑡) + 𝑒2𝛽(𝑇−𝑡)

2𝛽2

)

+
𝑞𝜎2 (𝑇 − 𝑡)4

48 (1 + 𝑞)

)
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Proof.

𝑃 (𝑡, 𝑇 ) = 𝐸
[

exp
(

−∫

𝑇

0
𝑟𝑢𝑑𝑢

)

|𝐹𝑡

]

.

Let the transitory complement be

𝑐𝑢 = 𝑟𝑢 − 𝜇𝑢 (5)

where 𝑐𝑢 follows the Ornstein–Uhlenbeck equation given by

𝑐𝑢 = 𝑒𝛽𝑢
(

𝑐0 + ∫

𝑢

0
𝜎𝑐𝑒

−𝛽𝑠𝑑𝑍𝑠

)

. (6)

with risk-neutral dynamics given by

𝑑𝑐𝑡 = 𝛽𝑐𝑡 + 𝜎𝑐𝑑𝑍𝑡

The autocovariance of the transitory component is given by

𝐶𝑜𝑣
[

𝑐𝑡, 𝑐𝑢
]

= 𝜎2𝑐 𝑒
𝛽(𝑢+𝑡)𝐸

[

∫

𝑡

0
𝑒−𝛽𝑠𝑑𝑍𝑠

[

∫

𝑢

0
𝑒−𝛽𝑠𝑑𝑍𝑠

]]

= 𝜎2𝑐 𝑒
𝛽(𝑢+𝑡)

∫

𝑢𝛬𝑡

0
𝑒−2𝛽𝑠𝑑𝑠 =

𝜎2𝑐
−2𝛽

𝑒𝛽(𝑢+𝑡)
(

𝑒2𝛽(𝑢𝛬𝑡) − 1
)

.

Therefore,

𝑉 𝑎𝑟
[

∫

𝑡

0
𝑐𝑢𝑑𝑢

]

= 𝐶𝑜𝑣
(

∫

𝑡

0
𝑐𝑢𝑑𝑢,∫

𝑡

0
𝑐𝑢𝑑𝑠

)

= ∫

𝑡

0 ∫

𝑡

0
𝐶𝑜𝑣

(

𝑐𝑢, 𝑐𝑠
)

𝑑𝑢𝑑𝑠 = ∫

𝑡

0 ∫

𝑡

0

𝜎2𝑐
−2𝛽

𝑒𝛽(𝑢+𝑠)
(

𝑒−2𝑎(𝑢𝛬𝑠) − 1
)

𝑑𝑢𝑑𝑠 =
𝜎2𝑐
2𝛽3

(

2𝛽𝑡 + 3 − 4𝑒𝛽𝑡 + 𝑒2𝛽𝑡
)

.

Likewise, the autocovariance of the permanent component is given by,

𝐶𝑜𝑣
[

𝜇𝑡, 𝜇𝑢
]

= 𝜎2𝑚𝐸
[

∫

𝑡

0 ∫

𝑡

0
𝑑𝑊𝑠 ∫

𝑢

0 ∫

𝑢

0
𝑑𝑊𝑠

]

= 𝜎2𝑚

[

∫

𝑡𝛬𝑢

0 ∫

𝑡𝛬𝑢

0
𝑑𝑠

]

= 𝜎2𝑚 ∫

𝑡𝛬𝑢

0
(𝑡𝛬𝑢) = 𝜎2𝑚

(𝑡𝛬𝑢)2

2
.

Therefore,

𝑉 𝑎𝑟
[

∫

𝑡

0
𝜇(𝑢)𝑑𝑢

]

= 𝜎2𝑚 ∫

𝑡

0 ∫

𝑡

0

(𝑠𝛬𝑢)2

2
𝑑𝑢𝑑𝑠 = 𝜎2𝑚

𝑡4

24
.

From (5), I have

𝐸
[

−∫

𝑡

0
𝑟𝑢𝑑𝑢

]

= 𝐸
[

−∫

𝑡

0

(

𝑐𝑢 + 𝜇𝑢
)

𝑑𝑢
]

Thus,

𝐸
[

−∫

𝑇

𝑡
𝑟𝑢𝑑𝑢

]

=
𝑟𝑡 − 𝜇𝑡
𝛽

(

1 − 𝑒𝛽(𝑇−𝑡)
)

− 𝜇𝑡 (𝑇 − 𝑡) (7)

Moreover,

𝑉 𝑎𝑟
[

−∫

𝑇

𝑡
𝑟𝑢𝑑𝑢

]

= 𝑉 𝑎𝑟
[

∫

𝑇

𝑡

(

𝑐𝑢 + 𝜇𝑢
)

𝑑𝑢
]

(8)

=
𝜎2𝑐
2𝛽3

(

2𝛽 (𝑇 − 𝑡) + 3 − 4𝑒𝛽(𝑇−𝑡) + 𝑒2𝛽(𝑇−𝑡)
)

+ 𝜎2𝑚
(𝑇 − 𝑡)4

24

I follow Harvey and Trimbur (2008) and model 𝜇𝑡 as

𝜇𝑡+1 = 𝜇𝑡 + 𝑥𝑡
𝑥𝑡+1 = 𝑥𝑡 + 𝜂𝑡

Because 𝜇𝑡 is an integrated unit root, it follows that

𝜎2∇𝑚 = 𝑡𝜎2𝜂 ,

and

𝜎2
∇2
𝜇
= 𝑡 − (𝑡 − 1) 𝜎2𝜂 = 𝜎2𝜂 .
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Therefore,

𝑞 =
𝜎2
∇2
𝜇

𝜎2𝑐
=
𝜎2𝜂
𝜎2𝑐

=
𝜎2𝜇
𝜎2𝑐
.

Combining Eqs. (4), (7) and (8), the bond price is given by

𝑃
(

𝑡, 𝑇 , 𝑟𝑡
)

= exp
([

−∫

𝑇

𝑡
𝑟𝑢
(

𝑟𝑡
)

𝑑𝑢
]

+ 1
2
𝑉 𝑎𝑟

[

−∫

𝑇

𝑡
𝑟𝑢
(

𝑟𝑡
)

𝑑𝑢
])

= 𝐸𝑥𝑝

(

𝑟𝑡 − 𝜇𝑡
𝛽

(

1 − 𝑒𝛽(𝑇−𝑡)
)

− 𝜇𝑡 (𝑇 − 𝑡) +
𝜎2𝑐
4𝛽3

(

2𝛽 (𝑇 − 𝑡) + 3 − 4𝑒𝛽(𝑇−𝑡) + 𝑒2𝛽(𝑇−𝑡) +
𝜎2𝜇
𝜎2𝑐

𝛽3 (𝑇 − 𝑡)4

12

))

= 𝐸𝑥𝑝
(

𝑟𝑡 − 𝜇𝑡
𝛽

(

1 − 𝑒𝛽(𝑇−𝑡)
)

− 𝜇𝑡 (𝑇 − 𝑡) + 𝜎2

4𝛽3 (1 + 𝑞∕2)

(

2𝛽 (𝑇 − 𝑡) + 3 − 4𝑒𝛽(𝑇−𝑡) + 𝑒2𝛽(𝑇−𝑡) + 𝑞
𝛽3 (𝑇 − 𝑡)4

12

))

= 𝐸𝑥𝑝
((

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

)

𝑟𝑡 +
(

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

+ (𝑇 − 𝑡)
)

𝜇𝑡 +
𝜎2

2𝛽2 (1 + 𝑞)

(

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

)

+ 𝜎2

2𝛽2 (1 + 𝑞)
(𝑇 − 𝑡) + 𝜎2

4𝛽 (1 + 𝑞)

(

1 − 2𝑒𝛽(𝑇−𝑡) + 𝑒2𝛽(𝑇−𝑡)

2𝛽2

)

+
𝑞𝜎2 (𝑇 − 𝑡)4

48 (1 + 𝑞)

)

= 𝐸𝑥𝑝
(

𝐴 (𝑡, 𝑇 ) 𝑟𝑡 − 𝜇𝑡 (𝐴 (𝑡, 𝑇 ) + (𝑇 − 𝑡)) + 𝐵 (𝑡, 𝑇 ) +𝐷 (𝑡, 𝑇 )
)

,

where

𝐴 (𝑡, 𝑇 ) ≡
(

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

)

,

𝐵 (𝑡, 𝑇 ) = 𝜎2

2𝛽2 (1 + 𝑞)
(𝐴 (𝑡, 𝑇 ) + (𝑇 − 𝑡)) +

𝜎2𝐴 (𝑡, 𝑇 )2

4𝛽 (1 + 𝑞)
,

and

𝐷 (𝑡, 𝑇 ) =
𝑞𝜎2 (𝑇 − 𝑡)4

48 (1 + 𝑞)
.

3. Continuous time interest rate models

Although much of the focus of this paper is on single-factor models with constant elasticity of volatility, I consider the Vasicek
(1977) model as my standard framework. First, I briefly review five competing single factor-models. My single factor models include
the Vasicek model, the CIR (1985) model, the CKLS (1992) model, the Ahn and Gao (1999) model, and the Chapman and Pearson
(2000) model. Following this introduction, I develop my nonstationary time-varying mean model and describe the econometric
approach used in estimating the model.

3.1. Single-factor interest rate models

(1) The Chan, Karolyi, Longstaff and Sanders (CKLS) Model: I consider the CKLS (1992) parameterization of the interest rate
diffusion process

{

𝑟𝑡 ∶ 𝑡 ≥ 0
}

that reads:

𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡)𝑑𝑡 + 𝜎𝑟
𝛾
𝑡 𝑑𝑍𝑡 (9)

where 𝑍𝑡 is a standard Brownian motion. 𝛼 and 𝛽 are the structural parameters of the conditional expected rate of change of the
process (drift), and 𝜎 and 𝛾 are structural parameters of the conditional rate of change of volatility (diffusion). In this model, the
interest rate reverts toward the expected value −𝛼∕𝛽,−𝛽 measures the speed of mean reversion, and 𝛾 controls the sensitivity of the
variance to the level of interest rates. When 𝛾 > 1, there is a so-called inverse leverage effect, in which the volatility of the interest
rate increases as its level increases.
(2) The Vasicek (1977) Model: I consider a stochastic differential equation of the form:

𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑍𝑡

where 𝛼, 𝛽 and 𝜎 are constants. The SDE is an Ornstein–Uhlenbeck process composed of a Brownian motion and a restoring drift
that pushes it downwards when the process is above the mean −𝛼∕𝛽 and upwards when it is below. Thus, the distribution of the
process is mean reverting and converges in equilibrium to a normally distributed mean −𝛼∕𝛽 and variance 𝜎2∕2𝛽. When 𝛼 > 0, 𝛽 < 0,
and 𝛾 > 1∕2, the interest rate has a positive distribution.
(3) The Cox et al. (1985) (CIR) Model: In this model, the interest rate stochastic differential equation takes the form

𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡)𝑑𝑡 + 𝜎𝑟
1∕2
𝑡 𝑑𝑍𝑡.

Different from the Vasicek model, the volatility term is decreasing with the level of the interest rate, allowing 𝛼 to prevent the
interest rate from going below zero. This condition holds as long as 𝛼 ≥ 1∕2𝜎2.
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(4) The Inverse CIR Model (AG): I follow Ahn and Gao (1999) and hypothesize that:

𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡 + 𝜃𝑟2𝑡 )𝑑𝑡 + 𝜎𝑟
1.5
𝑡 𝑑𝑍𝑡.

When 𝛼 > 0 and 𝛽 < 0, the interest rate has a positive distribution. Different from the CIR model, the model generates a concave
relationship between the interest rate and the yields.
(5) The Chapman and Pearson (CP) Model: I consider Chapman and Pearson (2000) representation for the following diffusion
model:

𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟
−1
𝑡 )𝑑𝑡 + 𝜎𝑟𝛾𝑡 𝑑𝑍𝑡.

The model has a polynomial drift that enforces slow mean reversion while interest rates are in a band, and stronger nonlinear
mean reversion while they are out of the band. This drift function has been investigated using a semiparametric procedure in
Aït-Sahalia (1996b), using maximum likelihood with Hermite expansion in Aït-Sahalia (1999), Aït-Sahalia (2002), using Efficient
Method of Moments in Gallant and Tauchen (1996), and using GMM in Chapman and Pearson (2000) and Czellar et al. (2007).

3.2. Econometrics

I follow Fama (2006) by assuming that the level of short-term interest rate is mean reverting to its long-term conditional mean
which is subject to permanent shocks. The interest rate process, 𝑟𝑡, can be decomposed into two parts, (i) the long-term nonstationary
stochastic mean, 𝜇𝑡, which is unpredictable and (ii) a zero mean transitory component, 𝑐𝑡:

𝑟𝑡 = 𝑐𝑡 + 𝜇𝑡, 𝑡 = 1,… , 𝑇 (10)

I follow Hodrick and Prescott (1997) and Ravn and Uhlig (2002) and specify the permanent component, 𝜇𝑡, by minimizing the
loss function:

𝑇
∑

𝑡=1

[

𝑟𝑡 − 𝜇𝑡
]2 + (1∕𝑞)

𝑇
∑

𝑡=2

[

∇2𝜇𝑡
]2 , (11)

where ∇2 denotes the second difference lag operator and 𝑇 is the sample size. The first term in (11) penalizes the poorness of fit
suggested by Fama (2006) that is due to the mean reversion of the expected return on bonds which in turn is due to mean reversion
in expected rate of inflation, while the second term penalizes the variability in the mean which is in part due to the Federal Reserve
actions to control money supply.

In this framework, it can be shown that there exists a unique solution to the minimization problem in (11). Denote 𝐹𝑇 to be a
known positive definite (𝑇 × 𝑇 ) matrix and denote 𝐼𝑇 to be (𝑇 × 𝑇 ) identity matrix,

𝑟 =
(

𝐹𝑇
𝑞

+ 𝐼𝑇

)

𝜇𝑇 .

Danthine and Girardin (1989) show that 𝜇𝑇 =
(

𝐹𝑇
𝑞 + 𝐼𝑇

)−1
𝑟𝑇 is the solution for (11). Denote 𝐿 to be the lag operator and 𝐿−1

to be the forward operator. Then, the first order condition for 𝜇𝑡 is

−2(𝑟𝑡 − 𝜇𝑡) − 4
(𝜇𝑡+1 − 2𝜇𝑡 + 𝜇𝑡−1)

𝑞
+ 2

(𝜇𝑡 − 2𝜇𝑡−1 + 𝜇𝑡−2)
𝑞

+ 2
(𝜇𝑡+2 − 2𝜇𝑡+1 + 𝜇𝑡)

𝑞
= 0

which can be written as

𝑟𝑡 =
(

𝐿−2

𝑞
− 4𝐿−1

𝑞
+
(

1 + 6
𝑞
− 4𝐿

𝑞
+ 𝐿2

𝑞

))

𝜇𝑡,

𝑟𝑡 =
(

1
𝑞
(

1 − 𝐿−1)2 (1 − 𝐿)2 + 1
)

𝜇𝑡.

Following Hodrick and Prescott (1997) and Ravn and Uhlig (2002) the solution for (11) is optimal for data generating process
of the form

𝛥2𝜇𝑡 = 𝜂𝑡 ∼ 𝑁𝐼𝐷
(

0, 𝜎2𝜂
)

,

𝑟𝑡−𝜇𝑡 = 𝑐𝑡 = 𝑐𝑡 ∼ 𝑁𝐼𝐷
(

0, 𝜎2𝑐
)

,

where 𝑁𝐼𝐷
(

0, 𝜎2
)

denotes normally and independently distributed with mean zero and variance 𝜎2, and 𝑐𝑡 and 𝜂𝑡+1 are mutually
independent, hence

𝐸
(

𝑐𝑡𝜂𝑠
)

= 0; ∀ 𝑡, 𝑠.
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3.3. Interest rate models with a nonstationary stochastic mean

Following Chapman and Pearson (2000) and CKLS (1992) the parameters of the continuous-time stochastic process in (1) can
be estimated using the following discrete-time econometric specification

𝑟𝑡+1 − 𝑟𝑡 = 𝛼 + 𝛽𝑟𝑡 + 𝜀𝑡+1, (12)

𝐸[𝜀𝑡+1] = 0, 𝐸[𝜀2𝑡+1] = 𝜎2𝑟2𝛾𝑡 .

In this setting, Yu (2012) shows that if the regressor 𝑟𝑡 in the right hand side of (12) has a permanent component (the
unit root and the slow mean reversion situations), then the CKLS parameterization leads to inconsistent estimation for the mean
reversion parameter.7 In accordance, I generalize the Vasicek model by allowing for a nonstationary stochastic mean that is subject
to permanent shocks, 𝜇𝑡. I model the permanent component using two approaches that have strong assumptions and allow for
considerable flexibility for the interest rate dynamics. In the first approach, I follow Ravn and Uhlig’s (RU) (2002) decomposition
procedure discussed in Section 3.2 to locate the nonstationary mean. I refer to my model parameterization as the HZ model. The
econometric specification of the nonstationary stochastic mean model (HZ) reads:
(1) The Stochastic Mean Model (HZ): 𝑟𝑡+1 − 𝑟𝑡 = 𝛽

(

𝑟𝑡 − 𝜇𝑡
)

+ 𝜀𝑡+1 and 𝐸[𝜀2𝑡+1] = 𝜎2.8
For comparison, I also follow Fama (2006) by estimating the permanent component as a moving average of the latest five years

of the interest rate:
(2) The Moving Average Vasicek Model (MAVAS): 𝑟𝑡+1 − 𝑟𝑡 = 𝛽

(

𝑟𝑡 − 𝜇∗𝑡
)

+ 𝜀∗𝑡+1 and

𝐸[𝜀∗2𝑡+1] = 𝜎2.

where 𝜇∗𝑡 is the moving average mentioned above. Note that the MAVAS model estimation may be inconsistent because the transitory
component 𝑐𝑡 = 𝑟𝑡 − 𝜇𝑡 could be correlated with error term 𝜀∗𝑡+1.

Since the GMM and Jackknife estimation of Phillips and Yu (2005) are feasible for these models, the estimation of nonstationary
models can be based on these methods. The following specific steps are implemented in the procedure:

1. Decompose the interest rate into permanent and transitory components using the RU procedure and, in turn, the Fama (2006)
approach described above.

2. Estimate the system parameters for fixed and nonstationary mean models by GMM, over the entire sample period. To estimate
stationary mean models, I use standard GMM, and for nonstationary mean models, I use the estimates of 𝜇𝑡 and 𝑐𝑡, together
with the corresponding diffusion process.

3. Also estimate the models’ parameters by GMM for each sub-sample I consider.
4. Calculate the jackknife estimators for the system parameters using the Phillips and Yu (2005) procedure.
5. Use the parameter estimates from the above procedures to calculate bond and option prices for the HZ model.

4. Data and empirical results

4.1. Data

I use three-month secondary market rates that consist of end-of-month observations of the annualized yield on the U.S. Treasury
bills from January 1934 through November 2013, collected from the Federal Reserve Economic Database (FRED) of the Federal
Reserve Bank of St. Louis. This series embodies the lengthiest monthly set of observations on the U.S. T-bill rate that I recognized.
The Treasury bill rates comprised in the daily H.15 release. The release is posted daily Monday through Friday at 4:15pm. The total
number of observations is 959. Similar source of data is previously used in the literature by Anderson and Lund (1997) and Stanton
(1997).

To compare my results with Aït-Sahalia (1999), I also consider the period of his sample from January 1963 to December 1998.
Table 1 shows the means, standard deviations, and the first five lagged autocorrelations of the three-month yield and the three-month
changes in the yield. The mean of the short-term riskless rate is 3.64% with a standard deviation of 3.16%. For the period considered
in Aït-Sahalia (1999), the mean is 6.3% with a standard deviation of 2.51%.

Panels A and B of Table 2 report the results of the Augmented Dickey-Fuller (ADF) test and the Augmented Weighted Symmetric
(WS) test in Pantula et al. (1994) for the entire sample period and for the sub-sample in Aït-Sahalia (1999).9 As shown, I cannot

7 Yu (2012) shows that the bias resulting from persistent interest rate is related to bad approximation of Cesaro sums and cannot be removed by jackknifing
or bootstrapping.

8 Consider the original Vasicek model 𝑑𝑟𝑡 = 𝜅(𝑏 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑍𝑡, where b is the long term mean and k is the speed of adjustment. [This model can also be
written in its Eq. (12) form as 𝑑𝑟𝑡 = 𝛼 + 𝛽𝑟𝑡 + 𝜎𝑑𝑍𝑡, with 𝛼 = 𝛽b and k= −𝛽.] The discretized form reads 𝑟𝑡+1 − 𝑟𝑡 = 𝜅(𝑏 − 𝑟𝑡) + 𝜀𝑡+1, where 𝜀𝑡+1 ∼ 𝜎𝑁(0, 1). This is
equivalent to HZ with b replaced by 𝜇𝑡 and k by −𝛽.

9 The ADF and WS asymptotic p-values are computed using MacKinnon (1994) approximation (robust to size distortion). To save space, I only report the
results of ADF and WS tests under the null of driftless unit root; the same results are obtained under the null of unit root with drift.
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Table 1
Summary statistics. Panel A presents summary statistics for the three-month Treasury-bill rate, using the entire sample period (959 annualized monthly observations
from January 1934 through November, 2013). Panel B presents the three-month Treasury-bill rate for the period studied in Aït-Sahalia (1999) (432 annualized
monthly observations from January 1963 through December 1998). I report the mean, the standard deviation, and a set of monthly autocorrelations (𝜌𝑗 denotes
the autocorrelation at lag j) for the interest rate in levels and first differences.

Variables N Mean Standard deviation 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5
Panel A: January 1934 through November 2013

𝑟𝑡 959 0.0366 0.0316 0.9932 0.9810 0.9713 −0.9611 0.9522
𝑟𝑡+1 − 𝑟𝑡 958 0.0000 0.0037 0.336 −0.072 0.0757 −0.0176 0.0368

Panel B: January 1963 through December 1998

𝑟𝑡 432 0.0630 0.0259 0.9794 0.9461 0.9160 0.8925 0.8691
𝑟𝑡+1 − 𝑟𝑡 431 0.0000 0.0052 0.3233 −0.1048 0.1193 −0.0431 0.0365

Table 2
Nonstationarity tests with a constant in the Fitted Regressions. The table presents the results of two nonstationarity tests applied to the three-month Treasury-bill
rate examined in this study (959 annualized monthly observations from January 1934 through November 2013). I implement the Augmented Dickey-Fuller
test (ADF) and the Augmented Weighted Symmetric test (WS) in Pantula et al. (1994). The ADF test statistic is the ratio 𝛼̂∕𝑆𝛼̂ from the estimated model
𝛿𝑟𝑡+1 = 𝑎 + 𝛼𝑟𝑡 +

∑𝑛
𝑖=1 𝜙𝑖𝛿𝑟𝑡 + 𝑢𝑡+1, where 𝑆𝛼̂ is the standard error of the parameter estimate 𝛼̂. The optimal lag length n is chosen on the basis of the Akaike

information criterion (AIC). The WS estimator of test statistic is given by 𝜌̂𝑊𝑆 =
∑𝑛
𝑡=2 𝑟𝑡𝑟𝑡+1

∑𝑛−1
𝑡=2 𝑟

2
𝑡+1+𝑛

−1 ∑𝑛
𝑡=1 𝑟

2
𝑡+1

,
where n is the length of the sequence 𝑟. I reject the null hypothesis of a unit root if the p-value is below a relevant significance level. P-values for the relevant
statistics are computed using the approximation of MacKinnon (1994) on the basis of a regression surface. I report simulated p-values based on 1000 replications
drawn from the normal distribution with zero mean and OLS squared residuals variances (the Wild bootstrap). Panel A reports test statistics for the entire sample
period (959 annualized monthly observations from January 1934 through November 2013). Panel B reports test statistics for the period studied in Aït-Sahalia
(1999) (432 annualized monthly observations from January 1963 through December 1998). Panel C reports test statistics for the ‘‘pre’’ period in Aït-Sahalia
(1999) (348 annualized monthly observations from January 1934 through December 1962). Panel D reports test statistics for the ‘‘post-Aït-Sahalia (1999)’’ period
(179 annualized monthly observations from January 1999 through November 2013).

WS
(p-value)

ADF
(p-value)

Panel A: 1934 through 2013 period −2.0337
(0.6215)

−1.8181
(0.6959)

Panel B: 1963 through 1998 period −2.2833
(0.4416)

−2.3711
(0.3951)

Panel C: 1934 through 1963 period −3.2869
(0.0379)

−4.0848
(0.0066)

Panel D: 1963 through 1999 period −3.0903
(0.0662)

−3.1794
(0.0885)

reject the null of unit root across all tests.10 The p-values of all of the tests are high, which provides evidence that the short-term
interest rate is persistent.11

Since the series displays long-time intervals of stable behavior and low mean and volatility at either ends (1934–1963 and
1999–2013), I test for a unit root in those subperiods to evaluate the impact of low mean and volatility on the test results. As shown
in Panels C and D, the null of unit root is rejected at a 5% significance level for the subperiod 1934 through 1963 and at a 10%
significance level for the subperiod 1999 through 2013. I document stationary interest rates only when interest rates and volatilities
are low.

A study by Conley et al. (1997) finds that the increase in volatility is a mechanism of inducing stationarity when interest rates
are high. However, I document stationary interest rates only when interest rates and volatilities are low. A pattern seems to emerge:
higher volatility periods do not necessary inject stationarity in the data. Consistent with Orphanides and Wilcox (2002), I infer that
volatility induces stationarity only when the interest rate is high enough to force the Federal Reserve to intervene to curb inflation.

In order to gain some insight into the nature of the interest rate, Fig. 1 plots the short-term interest rate and the estimated
nonstationary mean. As mentioned in the previous section, I approximate the nonstationary mean by choosing two smoothing
constants: 1/𝑞 = 129,600 (Panel A) and 1/𝑞 = 43,200 (Panel B). These are equivalent to the Ravn and Uhlig’s (2002) adjustments
of the fourth and third power of the frequency of observations, respectively.12 The fluctuation process of the stationary component
of short-term interest rate is also illustrated in the Figure. As shown, the stationary component reverts systematically about its
nonstationary mean except for the period spanning from September 1979 to July 1982, where substantial changes occur in the

10 Perron (1989) concludes that the nominal interest rate is a unit root process; the same conclusion is also documented by Aït-Sahalia (1996b) and Bandi
(2002). On the other hand, according to Bierens (1997), Al-Zoubi (2008, 2017) and Al-Zoubi et al. (2018), this cannot be realistic for two reasons: First, if the
interest rate is a driftless random walk then it must allow for negative values, which is unrealistic; second, if it is a random walk with positive drift then it
would converge to infinity, which is improbable.

11 See Perron (1989) for further discussion.
12 For models estimation, I follow Mehra (2004) in calculating the nonstationary mean at time t. In particular, I run the standard RU mean serially through

time using only the data available at time t for calculating the mean value for that point in time.
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Fig. 1. Interest Rate from January 1934 through November 2013. The figure plots three series. The first is the Federal Reserve Bank of St. Louis three-month
secondary market Treasury bill rate. The second series is the approximated nonstationary mean of the interest rate. The third series is the stationary component
of the interest rate. In Panels A and B, I use smoothing constants 1/q of 129,600 and 43,200, respectively. These are equivalent to the Ravn and Uhlig’s
(2002) adjustment of the fourth and third power of the frequency of observations, respectively. The sample is from January 1934 through November 2013 (959
annualized monthly observations).

variability of the interest rate around the trend. This may suggest a structural break during that period, in that the Federal Reserve
emphasized targets for monetary aggregates to curb inflation after September 1979.

4.2. Empirical results

In this section, I first estimate and compare the five affine models with the nonstationary mean models of the short-term interest
rate process. To reiterate, I model the permanent component using two approaches that make strong assumptions and allow for
considerable flexibility for the interest rate dynamics. In the first approach, I use Ravn and Uhlig’s (2002) method described in
Section 3.2 to locate the nonstationary mean. For comparison purposes I also follow Fama (2006) by estimating the permanent
component as a moving average of the latest five years of the riskless rate.

Before addressing estimation bias, I employ the naïve GMM technique. This allows us to obtain preliminary estimates and
demonstrate the role of specification error. I compare the performance of the five models with each other and with the modified
models. Later, I correct for bias using the jackknife technique developed by Phillips and Yu (2005).

I follow Chapman and Pearson (2000) in defining the orthogonality conditions for the CP model, Ahn and Gao (1999) for the
AG model, and Chan et al. (1992) for the Vasicek, CIR, and CKLS models. Since GMM is now common in the literature, I report the
relevant moment conditions in Appendix. The general approach is well explained in detail in Chan et al. (1992).
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Table 3
GMM estimate of five single-factor models and three modified models for short-term interest rate dynamics for the period from January 1963 through December
1998. Panel A presents GMM estimate of five single-factor interest rate models, namely Chapman and Pearson (2000), Ahn and Gao (1999), Chan et al. (1992),
Cox et al. (1985), and Vasicek (1977) for the period studied in Aït-Sahalia (1999) (432 annualized monthly observations from January 1963 through December
1998). The models I consider can be nested within the Chapman and Pearson (2000) model: 𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟

−1
𝑡 )𝑑𝑡 + 𝜎𝑟𝛾𝑡 𝑑𝑍𝑡 , where 𝑍𝑡 is the standard

Brownian motion. I examine the following discrete-time econometric specification
𝑟𝑡+1 − 𝑟𝑡 = 𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟

−1
𝑡 + 𝜀𝑡+1

𝐸[𝜀𝑡+1] = 0, 𝐸[𝜀2𝑡+1] = 𝜎2𝑟2𝛾𝑡 .
I follow Chapman and Pearson (2000) to estimate the models by using GMM. Define 𝜆 as the entire parameter vector of 𝛼, 𝛽, 𝜃1 , 𝜃2 , 𝜎, 𝑎𝑛𝑑 𝛾. The relevant
orthogonality conditions are as follows:

ℎ
(

𝑟𝑡+1 , 𝜆
)

=
[

𝜀𝑡+1 , 𝜀𝑡+1𝑟𝑡 , 𝜀𝑡+1𝑟2𝑡 , 𝜀𝑡+1𝑟
−1
𝑡 − 𝜎2𝑟2𝛾𝑡 ,

(

𝜀2𝑡+1 − 𝜎
2𝑟2𝛾𝑡

)

𝑟𝑡
]

, where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛼 − 𝛽𝑟𝑡 − 𝜃1𝑟2𝑡 − 𝜃2𝑟
−1
𝑡 ].

Panel B presents GMM estimate of the modified mean reverting interest rates models, HZ and MAVAS models for the period studied in Aït-Sahalia (1999)
(432 annualized monthly observations from January 1963 through December 1998). I follow Ravn and Uhlig (RU) (2002) and de Jong and Sakarya (2016) in
approximating the nonstationary mean, 𝜇𝑡. I choose a smoothing constant 1∕𝑞 = 129, 600. This is equivalent to the Ravn and Uhlig’s (2002) adjustment of the
fourth power of observations frequency. For comparison, I also follow Fama (2006) and approximate 𝜇𝑡 as a moving average of the latest five years of interest
rate data. I impose various restrictions on the parameters (see Appendix C) to obtain standard parametric models for the interest rate dynamics. GMM estimate
of the coefficients, overidentifying tests of Hansen (1982), their significance levels, and goodness of fit tests (RAMSE, MAE, ME, and MAPE). The corresponding
p-values are in parentheses. I follow Inoue and Shintani (2006) by using the Parzen kernel of Gallant (1987) with two lags to compute the moment-weighting
matrix. The covariance matrix is robust to heteroskedasticity and autocorrelation.

Panel A: Single-factor models

Model 𝛼
(p-value)

𝛽
(p-value)

𝜃1
(p-value)

𝜃2
(p-value)

𝜎2

(p-value)
𝛾
(p-value)

Overidentifying Test
(p-value)

RMSE MAE ME MAPE

Chapman
&Pearson

−0.03366
(0.0442)

0.52762
(0.0264)

−2.48081
(0.0091)

0.00065
(0.0549)

0.14583
(0.2797)

1.66439
(0.0000)

EXACT 0.00515 0.00298 0.00007 4.49

AG −0.00328 0.09767 −0.58304 0 0.04503 1.5 3.65610 0.00522 0.00300 −0.00013 4.791
(0.1384) (0.1044) (0.1069) (0.0000) (0.16073)

CKLS 0.00225 −0.03331 0 0 0.14758 1.71750 EXACT 0.00523 0.00302 −0.00012 4.496
(0.1653) (0.2352) (0.2789) (0.0000)

CIR 0.00112
(0.4681)

−0.01492
(0.5771)

0.00019
(0.0000)

0.5 6.61641
(0.0101)

0.00523 0.00296 −0.00015 4.333

VAS 0.00010
(0.4938)

−0.01383
(0.6029)

0 0 0.00001
(0.0000)

0 7.47546
(0.0063)

0.00529 0.00307 0.00080 4.475

Panel B: Modified models

HZ 0 −0.04747 0 0 0.00001 0 6.09671 0.00517 0.00290 0.00003 4.251
(0.0285) (0.0299) (0.0474)

MAVAS 0 −0.02879
(0.0068)

0 0 0.00001
(0.0049)

0 7.45312
(0.0240)

0.00525 0.00298 0.00007 4.368

To evaluate the forecast performance of each model I define the following goodness-of-fit measures based on the Bergstrom
(1986, 1989) generalized discrete form:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝐾

𝑇+𝐾
∑

𝑡=𝑇+1
(𝑟̂ − 𝑟)2

𝑀𝐴𝐸 = 1
𝐾

𝑇+𝐾
∑

𝑡=𝑇+1
|𝑟̂ − 𝑟|

𝑀𝐸 = 1
𝐾

𝑇+𝐾
∑

𝑡=𝑇+1
(𝑟̂ − 𝑟)

𝑀𝐴𝑃𝐸 = 1
𝐾

𝑇+𝐾
∑

𝑡=𝑇+1

|

|

|

|

𝑟̂ − 𝑟
𝑟

|

|

|

|

where 𝑟̂ is the forecast value of 𝑟 and K is the forecast period. RMSE measures root-mean-square error; MAE and ME measure
mean-absolute and mean error, respectively; and MAPE measures mean-absolute-percentage error.

4.2.1. Aït-Sahalia (1999) Period: 1963–1998
Panel A of Table 3 reports the parameter estimates, the asymptotic p-values of the individual parameters, the GMM overidenti-

fying (𝜒2) test, and the goodness of fit tests, for the unmodified models over the period spanning the years 1963 to 1998 (the period
considered by Aït-Sahalia, 1999). As shown, for CIR and Vasicek models, the p-values of the GMM criterion test are below 0.05,
which suggests that these models are misspecified. My results are consistent with Chapman and Pearson (2000) and Bandi (2002),
who argue that none of the models are correctly specified. The AG model has the lowest goodness of fit statistic with a p-value well
above 0.05 (0.16), but none of the parameters of the drift term are significant.
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Table 4
GMM estimate of five single-factor models and three modified models for short-term interest rate dynamics for the period from January 1934 through November
2013. Panel A presents GMM estimate of five single-factor interest rate models, namely Chapman and Pearson (2000), Ahn and Gao (1999), Chan et al. (1992),
Cox et al. (1985), and Vasicek (1977) for the entire sample period (959 annualized monthly observations from January 1973 through November 2013). The
models I consider can be nested within the Chapman and Pearson (2000) model: 𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟

−1
𝑡 )𝑑𝑡 + 𝜎𝑟𝛾𝑡 𝑑𝑍𝑡 , where 𝑍𝑡 is the standard Brownian

motion. I examine the following discrete-time econometric specification
𝑟𝑡+1 − 𝑟𝑡 = 𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟

−1
𝑡 + 𝜀𝑡+1

𝐸[𝜀𝑡+1] = 0, 𝐸[𝜀2𝑡+1] = 𝜎2𝑟2𝛾𝑡 .
I follow Chapman and Pearson (2000) to estimate the models by using GMM. Define 𝜆 as the entire parameter vector of 𝛼, 𝛽, 𝜃1 , 𝜃2 , 𝜎, 𝑎𝑛𝑑 𝛾. The relevant
orthogonality conditions are as follows:

ℎ
(

𝑟𝑡+1 , 𝜆
)

=
[

𝜀𝑡+1 , 𝜀𝑡+1𝑟𝑡 , 𝜀𝑡+1𝑟2𝑡 , 𝜀𝑡+1𝑟
−1
𝑡 − 𝜎2𝑟2𝛾𝑡 ,

(

𝜀2𝑡+1 − 𝜎
2𝑟2𝛾𝑡

)

𝑟𝑡
]

, where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛼 − 𝛽𝑟𝑡 − 𝜃1𝑟2𝑡 − 𝜃2𝑟
−1
𝑡 ].

Panel B presents GMM estimate of the modified mean reverting interest rates models, HZ and MAVAS models for the entire sample period (959 annualized monthly
observations from January 1973 through November 2013). To evaluate the effect of the nonstationary mean on the diffusion, I also modify the CKLS model by
incorporating nonstationary means in the drift. I follow Ravn and Uhlig (RU) (2002) and de Jong and Sakarya (2016) in approximating the nonstationary mean,
𝜇𝑡. I choose a smoothing constant 1∕𝑞 = 129,600. This is equivalent to the Ravn and Uhlig’s (2002) adjustment of the fourth power of observations frequency.
For comparison, I also follow Fama (2006) and approximate 𝜇𝑡 as a moving average of the latest five years of interest rate data. I impose various restrictions on
the parameters (see Appendix C) to obtain standard parametric models for the interest rate dynamics. GMM estimate of the coefficients, overidentifying tests of
Hansen (1982), their significance levels, and goodness of fit tests (RAMSE, MAE, ME, and MAPE). The corresponding p-values are in parentheses. I follow Inoue
and Shintani (2006) by using the Parzen kernel of Gallant (1987) with two lags to compute the moment-weighting matrix. The covariance matrix is robust to
heteroskedasticity and autocorrelation..

Panel A: Single-factor models

Model 𝛼
(p-value)

𝛽
(p-value)

𝜃1
(p-value)

𝜃2
(p-value)

𝜎2

(p-value)
𝛾
(p-value)

Overidentifying Test
(p-value)

RMSE MAE ME MAPE

Chapman
& Pearson

−0.00209 0.0839 −0.6735 0.00000 0.50681 1.6167 EXACT 0.00403 0.00228 −0.00005 128.173

(0.0174) (0.0136) (0.0268) (0.0219) (0.2251) (0.0000)

AG −0.00142 0.0552 −0.3917 0 0.05367 1.5 2.2211 0.00378 0.00214 0.00031 42.709
(0.0669) (0.0621) (0.1187) (0.0000) (0.3294)

CKLS 0.001256 −0.02262 0 0 0.45265 1.6612 EXACT 0.00379 0.00212 −0.00044 42.473
(0.2273) (0.2986) (0.2370) (0.0000)

CIR 0.000333
(0.7307)

−0.0044
(0.8254)

0.000189
(0.0000)

0.5 6.5263
0.01061

0.00374 0.00187 −0.00018 16.687

VAS 0.000613
(0.045)

−0.0102
(0.5488)

0 0 0.000009
(0.6187)

0 8.235
0.0041

0.00374 0.00193 −0.00025 24.186

Panel B: Modified models

HZ 0 −0.0385 0 0 0.00001 0 5.9988 0.00369 0.00182 −0.00000 10.598
(0.0158) (0.0345) (0.0498)

MAVAS 0 −0.0296 0 0 0.00009 0 7.9748 0.00386 0.00198 0.00000 13.307
(0.0005) (0.0051) (0.0185)

The result emerging from Table 3, Panel A is that CP model provides a very good estimate of the drift term. Unlike for the AG
and CKLS models, the estimated parameters of the drift are significantly different from zero. Consistent with the literature, CEV
models like CP model outperform the rest of the models in terms of forecast power. On the basis of RMSE and ME measures, CP
model performs the best. The other parametric models, namely CIR and Vasicek, perform relatively less well. Based on RMSE, the AG
model outperforms the CKLS, CIR, and Vasicek models. The CKLS model, on the other hand, outperforms the AG, CIR, and Vasicek
models on the basis of ME. Across all four measures, the Vasicek model performs the least well; however, no robust conclusion
can be gleaned about the linear mean-reverting behavior in this case because the GMM overidentifying test fails to accept the null
hypothesis for both CIR and Vasicek models, which results in an inconsistent estimate of the parameters (see, Aït-Sahalia, 1996b,
for further discussion). Ignoring the inconsistency in the entire parameter vector, one could, however, reject the linearity of the
drift term.13

Panel B of Table 3 reports parameter estimates for the nonstationary mean models. The results support my prediction, in striking
fashion. As shown, the overidentifying tests suggest that the modified Vasicek model is correctly specified using the RU nonstationary
mean. The model has a p-value in excess of 0.05 and cannot be rejected at a 95% confidence level. The goodness of fit measures
also support my prediction as the modified Vasicek model with the RU nonstationary mean setting performs the best on the basis
of the RMSE, MAE, ME, and MAPE measures.

An important feature of this ranking is that it can be classified by the persistence of the data generating process, that is, when the
interest rate has a permanent component, CEV models perform well and CIR and Vasicek models perform poorly. Correspondingly,
when Vasicek model is modified to account for permanent shocksCP, CKLS and AG models no longer outperform mean-reverting
models.

My estimates of the parameter of mean reversion 𝛽 are as expected. For the modified Vasicek model, the estimates of 𝛽 are
negative and significantly different from zero at 5% level, which implies reversion about a nonlinear, time-varying, mean. This in

13 Inconsistent with CKLS, Bandi (2002) finds that the parameters in the drift term are significant and concludes that the drift term has a linear structure.

283



H.A. Al-Zoubi Journal of Empirical Finance 53 (2019) 272–290

turn suggests that the model misspecification induced by not including enough time-varying components in the drift term may lead
to substantially biased estimates of the remaining parameters in the model.

4.2.2. Full sample period: 1934-2013
Panel A of Table 4 summarizes estimation results for the entire sample period. The estimates are not particularly supportive of

CEV models in the sense that the goodness-of-fit measures sharply increase relative to Panel A of Table 3. Moreover, the CIR model
performs the best relative to the CP, CKLS, and AG models. These results are in line with Cai and Swanson (2011) for the period of
stable interest rates. Consistent with Bali and Wu (2006) and Cai and Swanson (2011), I conclude that model performance is highly
sample dependent. Stationary mean models like the CIR and Vasicek models outperform CEV models. Of further note is that the CP
model performs modestly, and the Vasicek model outperforms the CP, CKLS, and AG models.

In Panel B of Table 4, I also estimate the modified version of my model. Again, estimation results support the nonstationary mean
model, in the sense that the parameter estimates are correctly identified and forecasting power substantially increased for both HZ
and MAVAS models. As shown, for HZ model, the p-values for the goodness-of fit-statistic are well above 5% and the models cannot
be rejected. However, for MAVAS, the model is still rejected at a 5% significance level.

Based on forecasting power measures compared with models in Panel A of Table 4, the modified model with the RU mean
performs the best across all measures. The modified models with MA mean also exhibit good performance. Furthermore, for each
nonstationary mean model, the mean reversion parameter 𝛽 becomes negative and significant with an increase in the speed of mean
reversion. Therefore, the finding of mean reversion about the nonlinear mean is robust.

4.3. Out-of-sample forecast

To check models performance out-of-sample, I run the Diebold and Mariano (1995) forecast accuracy test for the HZ model
against the five affine models. Let 𝑟̂1𝑡 and 𝑟̂2𝑡 be the estimate of the interest rate 𝑟𝑡 in two competing models. The Diebold–Mariano
test statistic (DM) is the ratio 𝑑∕

√

𝐴𝑉 𝐴𝑅 where 𝑑 is the sample mean of the loss differential for the two competing models
(

𝑑 = 𝐾−1 ∑𝑇+𝐾
𝑡=𝑇+1

(

(

𝑟̂1𝑡 − 𝑟𝑡
)2 −

(

𝑟̂2𝑡 − 𝑟𝑡
)2
))

and 𝐴𝑉 𝐴𝑅 is the estimate of the asymptotic variance of the loss differential described
in Diebold and Mariano (1995):

𝐴𝑉 𝐴𝑅
(

𝑑
)

=
2𝜋𝑓𝑑 (0)
𝐾

,

where 𝐾 is the forecast horizon and 𝑓𝑑 (0) is a consistent estimate of the spectral density function of 𝑑 at frequency zero defined by:

𝑓𝑑 (0) =
1
2𝜋

𝑇−1
∑

𝐾=−(𝑇−1)
𝐼
( ℎ
𝐾 − 1

)

𝛾̂𝑑 (ℎ) ,

where

𝛾̂𝑑 (ℎ) =
1
𝑇

𝑇
∑

𝑡+|ℎ|+1

(

𝑑𝑡 − 𝑑
)

(

𝑑𝑡−|−ℎ| − 𝑑
)

,

and

𝐼
( ℎ
𝐾 − 1

)

=

⎧

⎪

⎨

⎪

⎩

1 𝑓𝑜𝑟
|

|

|

|

ℎ
𝐾 − 1

|
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≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
;

thus

𝑓𝑑 (0) =
1
2𝜋

(

𝛾̂𝑑 (0) + 2
𝐾−1
∑

ℎ=1
𝛾̂𝑑 (0)

)

.

To overcome the size distortion of the test in a finite sample, I follow Harvey et al. (1997) and correct the bias of the DM test
by comparing it to a Student-t distribution with (T-1) degrees of freedom. The corrected statistic takes the form

𝐷𝑀∗ =
√

𝑇 + 1 − 2ℎ + ℎ (ℎ − 1)
𝑇

𝐷𝑀.

For each test, I use three forecast horizons: 1, 6, and 24 months and use data over the period January 1934–November 2003 for
estimation and reserve data over the period December 2003–November 2013 for out-of-sample forecasting. The model is estimated
using the first data points and the one-period-ahead forecast is generated, for a total of 120 observations. The null hypothesis is that
the models have the same forecast accuracy against the alternative hypothesis that the modified model is more accurate than the
competing model. The results are reported in Table 5. They are broadly consistent with the previous findings. Specifically, for one-
and six-month forecast horizons the null that model forecasts are equally accurate is mostly rejected at the 5% significance level in
favor of HZ. For the 24-month forecast horizon, the AG and CKLS models are rejected at the 1% significance level and the CP and
Vasicek models are rejected at the 10% significance level in favor of HZ.
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Table 5
Diebold–Mariano forecast accuracy test of the modified model versus five single-factor models for short-term interest rate dynamics for the period from January
1963 through November 2013. The table presents the results of the Diebold and Mariano (1995) forecast accuracy test applied to forecast errors of five
single-factor models against HZ model for the short-term interest rate. The sample period is from January 1934 through November 2013. I use data over the
period January 1934–November 2003 for estimation and reserve data over the period December 2003–November 2013 for out-of-sample forecasting. The model
is estimated using the first data points and the one-period-ahead forecast is generated, for a total of 120 observations. The Diebold–Mariano test statistic is the
ratio 𝑑∕

√

𝐴𝑉 𝐴𝑅 where 𝑑 is the sample mean of the loss differential for the two competing models
(

𝑑 = 𝐾−1 ∑𝑇+𝐾
𝑡=𝑇+1

(

(

𝑟̂1𝑡 − 𝑟𝑡
)2 −

(

𝑟̂2𝑡 − 𝑟𝑡
)2
))

and 𝐴𝑉 𝐴𝑅 is the

estimate of the asymptotic variance of the loss differential described in Diebold and Mariano (1995): 𝐴𝑉 𝐴𝑅
(

𝑑
)

= 2𝜋𝑓𝑑 (0)
𝐾

, where 𝑓𝑑 (0) is a consistent estimate
of the spectral density function of 𝑑 at frequency zero and 𝐾 is the forecast horizon. To overcome the size distortion of the test in a finite sample, I follow
Harvey et al. (1997) and correct the bias of the DM test by comparing it to a Student-t distribution with (𝑇 − 1) degrees of freedom For each test, I use three
forecast horizons (1, 6, and 24 months). The null hypothesis is that the two models have the same forecast accuracy against the alternative hypothesis that the
modified model is more accurate than the competing model.

1-month forecast horizon 6-month forecast horizon 24-month forecast horizon

Model 2 HZ HZ HZ

Model 1

CP 3.4859 1.9969 1.7329
(0.0005) (0.0461) (0.08385)

AG 5.4620 4.1521 4.7069
(0.0000) (0.0000) (0.0000)

CKLS 4.2272 3.3218 3.3133
(0.0000) (0.0009) (0.0009)

CIR 2.0549 1.9218 1.5542
(0.0402) (0.05492) (0.1205)

Vasicek 3.3859 2.4596 1.8821
(0.0007) (0.0141) (0.06012)

4.4. The jackknife estimate of the drift and the diffusion function

In this Section 1 implement the method of Phillips and Yu (2005) for correcting the bias of consistent estimators for the short-
rate parametric models. They find that their jackknife procedure provides a very considerable bias reduction over the Maximum
likelihood Estimator (MLE).14 The performance of the jackknife is also examined in Phillips and Yu (2009) and compared with
approximation based methods of ML, like the Euler method studied in Merton (1980) and Lo (1988), the Milstein scheme proposed
in Elerian (1998), the Nowman (1997) expansion, and the Hermite expansion proposed in Aït-Sahalia (1999) and developed in Aït-
Sahalia (2002). Phillips and Yu (2009) conclude that the jackknife method significantly outperforms all existing approximations in
reducing bias. Tang and Chen (2009) compare the jackknife with a parametric bootstrap, and the estimation proposed in Gourieroux
et al. (1993); they find that the jackknife delivers satisfactory results in bias reduction even though it inflates the variance. As noted
by Phillips and Yu (2005, 2009)) and Bao et al. (2014), a carefully designed jackknife procedure substantially reduces bias, leading
to a decrease in the RMSE.

To motivate the jackknife method of Phillips and Yu (2005), let N be the number of observations in the entire sample and divide
the sample into m successive blocks each with 𝑙 equal observations, that is 𝑁 = 𝑙 × 𝑚. Let 𝜃̂𝑁 be a consistent estimator of a certain
parameter 𝜃 utilizing the entire sample. Furthermore, let 𝜃̂𝑙𝑖 be a consistent estimator of 𝜃 utilizing the 𝑖’th block. The jackknife
bias-corrected estimator is

𝜃̂𝐽𝑎𝑐𝑘 =
𝑚

𝑚 − 1
𝜃𝑁 −

∑𝑚
𝑖 𝜃̂𝑙𝑖

𝑚2 − 𝑚
.

Phillips and Yu (2005) prove that under quite broad conditions which insure that the bias of the estimates 𝜃̂ is correctly
asymptotically sized with power of

(

𝑁−1), the bias in jackknife estimate 𝜃̂𝐽𝑎𝑐𝑘 is of order 𝑂
(

𝑁−2) rather than 𝑂
(

𝑁−1). Of note, the
jackknife is practically simple and is relevant to a wide range of models, including models with unknown asymptotic bias expansions
such as CEV models.

Table 6 reports the jackknife estimates and goodness of fit tests for the diffusion models for the entire sample period. Recall
that my GMM estimations in Tables 3 and 4 experienced some identification problems in estimating the MAVAS model. The p-value
of the GMM overidentifying

(

𝜒2) test was well below 5%, which led to inconsistent parameter estimation. However, when I used
the RU mean, the p-values of the

(

𝜒2) statistic increased above 5%, indicating consistent GMM estimation. Therefore, below, I use
the RU mean specification as my general nonlinear drift specification. I let HZ1 and HZ2 denote the HZ model with the Ravn and
Uhlig’s (2002) adjustments using the fourth and third power of the frequency of observations, respectively.

As shown, the jackknife provides improvements across all models in terms of RMSE, MAE, and ME measures. Moreover, the CKLS
model performs the best amongst the CP, AG, CKLS, CIR, and Vasicek models. This is followed by CP and AG models, respectively.

14 Duffee and Stanton (2012) find that the Efficient Method of Moments (EMM) exhibits high finite sample bias even in the simplest term structure models.
Bauer et al. (2012) also use simulation based bias correction method for finite-sample bias of the affine dynamic term structure model that helps in measuring
policy. implications or the nominal term premia.
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Table 6
Jackknife estimate of five single-factor models and two modified models for short-term interest rate dynamics for the period from January 1934 through November
2013. Panel A presents jackknife estimates of five single-factor interest rate models, namely Chapman and Pearson (2000), Ahn and Gao (1999), Chan et al.
(1992), Cox et al. (1985), and Vasicek (1977), for the entire sample period (959 annualized monthly observations from January 1934 through November 2013).
The models I consider can be nested within the Chapman and Pearson (2000) model: 𝑑𝑟𝑡 = (𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟

−1
𝑡 )𝑑𝑡+ 𝜎𝑟𝛾𝑡 𝑑𝑍𝑡 , where 𝑍𝑡 is the standard Brownian

motion. I examine the following discrete-time econometric specification
𝑟𝑡+1 − 𝑟𝑡 = 𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟

−1
𝑡 + 𝜀𝑡+1

𝐸[𝜀𝑡+1] = 0, 𝐸[𝜀2𝑡+1] = 𝜎2𝑟2𝛾𝑡 .
I follow Phillips and Yu (2005) to estimate the models. Let N be the number of observations in the entire sample and divide the sample into 𝑚 = 2 successive
blocks each with 𝑙 equal observations, that is 𝑁 = 𝑙 × 𝑚. Let 𝜃̂𝑁 be a consistent estimator of a certain parameter 𝜃 utilizing the entire sample. Furthermore, let
𝜃̂𝑙𝑖 be a consistent estimator of 𝜃 utilizing the 𝑖’th block. The jackknife bias-corrected estimator is

𝜃̂𝐽𝑎𝑐𝑘 =
𝑚
𝑚−1

𝜃𝑁 −
∑𝑚
𝑖 𝜃̂𝑙𝑖

𝑚2−𝑚
.

Panel B presents jackknife estimate of the modified mean reverting interest rates models, HZ model for the entire sample period (959 annualized monthly
observations from January 1973 through November 2013). I consider a stochastic differential equation of the form: 𝑑𝑟𝑡 = 𝛽

(

𝑟𝑡 − 𝜇𝑡
)

𝑑𝑡+𝜎𝑑𝑍𝑡 for the HZ model. I
follow Ravn and Uhlig (RU) (2002) and de Jong and Sakarya (2016) in approximating the nonstationary mean, 𝜇𝑡. In particular, I choose two smoothing constants
1∕𝑞 = 129, 600 𝑎𝑛𝑑 43, 200. These are equivalent to the Ravn and Uhlig’s (2002) adjustments of the fourth and third power of the frequency of observations,
respectively. I impose various restrictions on the parameters (see appendix C) to obtain standard parametric models for the interest rate dynamics. HZ1 and HZ2
stand for the HZ model with the Ravn and Uhlig’s (2002) adjustments to the fourth and third power of the frequency of observations, respectively. I provide
jackknife estimates of the coefficients and goodness of fit tests (RAMSE, MAE, and ME).

Panel A: Single-factor models

Model 𝛼 𝛽 𝜃1 𝜃2 𝜎2 𝛾 RAMSE MAE ME

CP −0.00259 0.10093 −0.89064 0.000001 0.04095 1.27214 0.00388 0.00232 0.00066
AG −0.00086 0.03294 −0.12421 0 0.05347 1.5 0.00381 0.00202 −0.00006
CKLS 0.00101 −0.01566 0 0 1.10866 1.31889 0.00377 0.00205 −0.00044
CIR 0.00033 −0.00535 0.00019 0.5 0.00373 0.00187 −0.00014
VAS 0.00074 −0.01470 0 0 0.00001 0 0.00374 0.00197 −0.00021

Panel B: Modified models

HZ1 0 −0.03305 0 0 0.00007 0 0.003692 0.00182 −0.0000075
HZ2 0 −0.05869 0 0 0.00001 0 0.003667 0.00181 −0.0000076

Again, the HZ model outperforms all competing models. On the basis of RMSE, MAE and ME, the HZ2 model performs the best,
followed by the HZ1 model. Consistent with the results from Table 4, CEV models perform modestly, and underperform relative to
the CIR and Vasicek models.

The parameter estimates for the drift functions in Table 6 provide supporting evidence for my earlier findings from the stochastic
mean models. For the entire sample period, it is apparent that the estimates of parameter 𝛽 are negative across all stochastic
mean models. This is consistent with the intuition that the interest rate should converge more quickly to a central tendency that is
nonstationary than a constant mean.

5. Estimating bond and option prices using spot rates with nonstationary means

In earlier literature, the problem of biased estimation turns out to be significant in pricing bonds and options. For example,
Phillips and Yu (2005) document that estimation bias leads to a 1% downward bias in the bond price and a 24.4% downward bias
in the option price. Tang and Chen (2009) also document large underestimation in option values under both the Vasicek and the CIR
models. While both jackknife and bootstrap methods have been shown to be efficient in reducing the bias for bond and option prices
even if the model is misspecified, the bias in the estimation is still large. For instant, Phillips and Yu (2005) show that the jackknife
method is able to reduce the bias in option price from −21.04% to −5.89%, −40.02% to −23.02%, and −57.65% to −47.72% for
in-the money, at-the-money, and out-of-the-money options, respectively. Unfortunately, misspecification error still accounts for the
majority of bias and becomes more severe when fewer observations are available or for options with relatively longer maturities.

To address the problem of biased estimation using nonstationary mean models for spot rates, I use the analytic solutions for
option prices for the Vasicek, HZ1, and HZ2 models. I denote 𝐶𝑡,𝑇 ,𝑆,𝐾 (𝜃) to be the theoretical price of a European call option at time
𝑡 with strike price 𝐾 and maturity S on the bond with price 𝑃𝑡,𝑇 (𝜃) maturing at 𝑇 > 𝑆. Section 2.2 provides the analytic formula for
the bond price in the case of HZ model, as functions of the estimated parameters. For the Vasicek model, I use the analytic formula
given in Vasicek (1977). I first compute the implied bond prices by plugging in the parameter estimates of 𝛽 and 𝜎2 from Vasicek,
HZ1, and HZ2 models with 𝑡 = 0 and 𝑇 = 3. I evaluate the performance of the models using RMSE and compare implied bond prices
with observed (true) bond prices. The true zero-coupon bond price is given by

𝑃
(

𝑡, 𝑇 , 𝑟𝑡
)

= 𝐸𝑥𝑝
(

−𝑟𝑡𝑇
)

.

The implied option prices for the three models are calculated using the analytic formula provided in Jamshidian (1989) for a
European call option with a face value of a bond = $100, 𝐾 = $90 and 𝑆 = 1. I used bond prices generated from both the Vasicek
and HZ models to calculate option prices. The call option price that matures at time S on a zero-coupon bond maturing at time T is

𝐿𝑃 (0, 𝑇 )𝑁 (ℎ) −𝐾𝑃 (0, 𝑆)𝑁
(

ℎ − 𝜎𝑃
)
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Table 7
Zero-coupon bond prices and European call option prices under the nonstationary mean interest rate model. The table presents bond and option prices for
the nonstationary mean (HZ) and Vasicek (1977) models. 𝑃 and 𝐶̂ are the estimated zero-coupon bond and European call option prices respectively, 𝑃 is the
observed-zero coupon bond price, Avg, Std Dev, and RMSE are the estimated average, standard deviation, and root-mean-square error respectively. I use GMM
and jackknife parameter estimates for the entire sample to estimate 𝑃 and 𝐶̂. To test model performance, I compute 𝑃 and 𝐶̂ on a monthly basis using the
observed three-month Treasury-bill rate for the entire sample period (959 annualized monthly observations from January 1934 through November 2013). HZ1
and HZ2 stand for the HZ model with the Ravn and Uhlig’s (2002) adjustments to the fourth and third power of the frequency of observations, respectively.
For the HZ model, the bond price is given by

𝑃 = 𝐸𝑥𝑝
(

𝐴 (𝑡, 𝑇 ) 𝑟𝑡 − 𝜇𝑡 (𝐴 (𝑡, 𝑇 ) + 1) + 𝐵 (𝑡, 𝑇 ) +𝐷 (𝑡, 𝑇 )
)

,
where

𝐴 (𝑡, 𝑇 ) =
(

1 − 𝑒𝛽(𝑇−𝑡)
𝛽

)

, 𝐵 (𝑡, 𝑇 ) = 𝜎2

2𝛽2 (1 + 𝑞)
(𝐴 (𝑡, 𝑇 ) + (𝑇 − 𝑡)) +

𝜎2𝐴 (𝑡, 𝑇 )2

4𝛽 (1 + 𝑞)
, and 𝐷 (𝑡, 𝑇 ) =

(

𝑞𝜎2𝛽3 (𝑇 − 𝑡)4

48 (1 + 𝑞)

)

.

The column ‘‘True P’’ is the average of the true zero-coupon bond price given by
𝑃
(

𝑡, 𝑇 , 𝑟𝑡
)

= 𝐸𝑥𝑝
(

−𝑟𝑡𝑇
)

.
The column ‘‘𝐶̂ ’’ reports the average of the numerical call option prices calculated using Jamshidian (1989) formula for bond prices implied from the HZ and
Vasicek models.

𝛼 𝛽 𝜎2 𝑃 𝐶̂ True P

Under the Vasicek process

GMM estimates
Avg
St Dev
RMSE

0.00061 −0.01020 0.000009
0.89877
0.08055
0.00863

4.02295
3.78326

0.89983
0.08186

Jackknife estimates
Avg
St Dev
RMSE

0.00074 −0.014703 0.00001
0.89887
0.08005
0.00868

4.11465
3.75971

Under the HZ1 Process

GMM estimates
Avg
St Dev
RMSE

0 −0.03851 0.00001
0.89925
0.08130
0.00157

4.16609
3.85562

Jackknife estimates
Avg
St Dev
RMSE

0 −0.03305 0.00007
0.89927
0.08137
0.00138

4.16832
3.86371

Under the HZ2 Process

GMM estimates
Avg
St Dev
RMSE

0 −0.06014 0.00001
0.89945
0.08122
0.00192

4.17549
3.86158

Jackknife estimates
Avg
St Dev
RMSE

0 −0.05869 0.00001
0.89940
0.08123
0.00189

4.17192
3.86000

where 𝐿 is the principal of the zero coupon bond, 𝐾 is the strike price, 𝑃 (0, 𝑇 ) is the bond price derived in Proposition 2.2, and

ℎ = 1
𝜎𝑝
𝑙𝑛
𝐿𝑃 (0, 𝑇 )
𝐾𝑃 (0, 𝑆)

+
𝜎𝑃
2

𝜎𝑃 = 𝜎
𝛽
[

𝑒𝛽(𝑇−𝑠) − 1
]

√

𝑒2𝛽𝑆 − 1
2𝛽

.

The following steps are taken to implement the technique.

1. Using the parameter estimates in Tables 4 and 6, I first calculate bond prices of the Vasicek and HZ models for the entire
sample period. I use the analytic formula derived in Proposition 2.2 to calculate the HZ bond prices.

2. Compute the RMSE of the Vasicek and HZ models by comparing both models’ prices with the true bond prices using the
entire sample period.

3. Using the Vasicek and HZ bond prices calculated in step 1, calculate the call option prices for each model using the analytic
formula provided in Jamshidian (1989).

I Compare the implied option prices of Vasicek and HZ models with the results of Phillips and Yu (2005) and Tang and Chen
(2009). As a robust check, I also compare the option prices implied by the three models with their jackknife counterparts. If the
nonstationary mean is the main source of misspecification bias, one would expect little or no improvements from jackknifing the
HZ1 and HZ2 models.
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Table 7 reports the estimation results for bond and option prices implied from Vasicek, HZ1, and HZ2. As shown, the
nonstationary mean plays an important role in all cases. In fact, the RMSE of HZ1 and HZ2 bond prices are 18% (0.0015/0.0086)
and 22% (0.0019/0.008) of that of the Vasicek model, respectively. Also, the HZ1 and HZ2 models increase the implied option
prices by 3.6% (4.166/4.02–1) and 3.8% (4.175/4.02–1), respectively, in comparison to Vasicek model. The bias reduction of my
proposed model is comparable to the size of the bias reported by Phillips and Yu (2005), who find that the estimation bias of the
mean-reversion parameter leads to a 6%–21% downward bias in the in-the-money bond option price and a 1% downward bias in
the discount bond price. Also, notice that the jackknife method increases implied option prices by 2.2% for the Vasicek model.
However, no material bias reduction is reported in the case of HZ1 and HZ2 models when the jackknife method is used. These
results confirm that the nonstationary mean is the main source of downward bias in implied bond option prices.

6. Conclusion

In this paper, I develop an interest rate model that embeds a nonstationary mean in the interest rate process. Relative to several
well-known models, the model that provides the best fit with the data in fact is the one with a nonstationary stochastic mean, which
also allows for possible nonlinearity in the drift function. My modeling accords with Fama’s (2006) assertion that the interest rate
exhibits strong evidence of a nonstationary mean. Empirical results show the procedure of imposing a nonstationary mean in the
Vasicek model is highly effective and offers substantial improvements in terms of root-mean-square error. In fact, I find that the
nonstationary mean governs a substantial majority of the dynamics of bond and bond option prices.

Appendix

This appendix provides details for GMM estimations used in the paper. The stationary mean models are based on the following
discrete-time econometric specification

𝑟𝑡+1 − 𝑟𝑡 = 𝛼 + 𝛽𝑟𝑡 + 𝜃1𝑟2𝑡 + 𝜃2𝑟
−1
𝑡 + 𝜀𝑡+1 (13)

𝐸[𝜀𝑡+1] = 0, 𝐸[𝜀2𝑡+1] = 𝜎2𝑟2𝛾𝑡 .

The five affine models are linked by placing the following restrictions on the parameters:

1. The Chapman and Pearson model: No restrictions.
2. The Ahn and Gao model: 𝜃2 = 0, 𝛾 = 1.5.
3. The CKLS model: 𝜃1 = 0, 𝜃2 = 0.
4. The CIR Model: 𝜃1 = 0, 𝜃2 = 0, 𝛾 = 0.5.
5. The Vasicek model: 𝜃1 = 0, 𝜃2 = 0, 𝛾 = 0.

Following Hansen (1982) and Chapman and Pearson (2000), the econometric specification of (12) can fit into a GMM framework
as follows. Define 𝜆 as the entire parameter vector of 𝛼, 𝛽, 𝜃1, 𝜃2, 𝜎, 𝑎𝑛𝑑 𝛾. The relevant orthogonality conditions are as follows:

1. The Chapman and Pearson Model:

𝐸
[

ℎ
(

𝑟𝑡+1, 𝜆
)]

, ℎ
(

𝑟𝑡+1, 𝜆
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝑡+1

𝜀𝑡+1𝑟𝑡

𝜀𝑡+1𝑟2𝑡

𝜀𝑡+1𝑟−1𝑡

𝜀2𝑡+1 − 𝜎
2𝑟2𝛾𝑡

(

𝜀2𝑡+1 − 𝜎
2𝑟2𝛾𝑡

)

𝑟𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛼 − 𝛽𝑟𝑡 − 𝜃1𝑟2𝑡 − 𝜃2𝑟
−1
𝑡 ].

2. The CKLS model:

ℎ
(

𝑟𝑡+1, 𝜆
)

=
[

𝜀𝑡+1, 𝜀𝑡+1𝑟𝑡, 𝜀
2
𝑡+1 − 𝜎

2𝑟2𝛾𝑡 ,
(

𝜀2𝑡+1 − 𝜎
2𝑟2𝛾𝑡

)

𝑟𝑡
]

,

where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛼 − 𝛽𝑟𝑡].
3. The AG model:

ℎ
(

𝑟𝑡+1, 𝜆
)

=
[

𝜀𝑡+1, 𝜀𝑡+1𝑟𝑡, 𝜀𝑡+1𝑟
2
𝑡 , 𝜀

2
𝑡+1 − 𝜎

2𝑟2𝛾𝑡 ,
(

𝜀2𝑡+1 − 𝜎
2𝑟3𝑡

)

𝑟𝑡,
(

𝜀2𝑡+1 − 𝜎
2𝑟3𝑡

)

𝑟3𝑡
]

,

where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛼 − 𝛽𝑟𝑡 − 𝜃1𝑟2𝑡 ].
4. The CIR Model:

ℎ
(

𝑟𝑡+1, 𝜆
)

=
[

𝜀𝑡+1, 𝜀𝑡+1𝑟𝑡, 𝜀
2
𝑡+1 − 𝜎

2𝑟𝑡,
(

𝜀2𝑡+1 − 𝜎
2𝑟𝑡

)

𝑟𝑡
]

where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛼 − 𝛽𝑟𝑡].
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5. The Vasicek Model:

ℎ
(

𝑟𝑡+1, 𝜆
)

=
[

𝜀𝑡+1, 𝜀𝑡+1𝑟𝑡, 𝜀
2
𝑡+1 − 𝜎

2,
(

𝜀2𝑡+1 − 𝜎
2) 𝑟𝑡

]

where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛼 − 𝛽𝑟𝑡].

I also estimate the stochastic mean models (HZ and MAVAS):

6. The stochastic mean HZ Model:

ℎ
(

𝑟𝑡+1, 𝜆
)

=
[

𝜀𝑡+1, 𝜀𝑡+1𝑐𝑡, 𝜀
2
𝑡+1 − 𝜎

2,
(

𝜀2𝑡+1 − 𝜎
2) 𝑐𝑡

]

where 𝜀𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛽𝑐𝑡].
7. The Moving Average Vasicek Model:

ℎ
(

𝑟𝑡+1, 𝜆
)

=
[

𝜀∗𝑡+1, 𝜀
∗
𝑡+1𝑐𝑡, 𝜀

∗2
𝑡+1 − 𝜎∗2,

(

𝜀∗2𝑡+1 − 𝜎∗2
)

𝑐𝑡
]

,

where 𝜀∗𝑡+1 = [𝑟𝑡+1 − 𝑟𝑡 − 𝛽𝑐𝑡].

Define 𝑌𝑡 to be a K -dimensional vector of instrumental variables with finite variance that are included in the information set,
and let the function f be

𝑓
(

𝑥𝑡+1, 𝑌𝑡, 𝜆
)

= ℎ
(

𝑥𝑡+1, 𝜆
)

⊗ 𝑌𝑡, (14)

where ⊗ is the Kronecker product. The minimum distance estimator of 𝜆 that is defined by the unconditional expectation of (14)
can be estimated by minimizing the GMM criterion of the form,

1
𝑇

[

𝑓
(

𝑥𝑡+1, 𝑌𝑡, 𝜆
)]′𝑊𝑇

1
𝑇

[

𝑓
(

𝑥𝑡+1, 𝑌𝑡, 𝜆
)]

(15)

where 𝑊𝑇 is a consistent estimate of
(

var
[

(1∕𝑇 )
(

𝑓
(

𝑥𝑡+1, 𝑌𝑡, 𝜆
)

𝑡
)])−1.

To test for validity of restrictions among the models, the GMM test of overidentifying restrictions is used. Let L be the number of
moment restrictions that are greater than the elements in the parameter vector. The minimized GMM criterion in (15) can be used
to test if the remaining, 𝐿−𝐾, linearly independent moments conditions are zero. Under the null hypothesis that these restrictions
are valid, I have that:

1
𝑇

[

𝑓
(

𝑥𝑡+1, 𝑌𝑡, 𝜆
)]′𝑊𝑇

1
𝑇

[

𝑓
(

𝑥𝑡+1, 𝑌𝑡, 𝜆
)] 𝑎∼ 𝜒2

𝐿−𝑘. (16)

For jackknife refinements, I follow Inoue and Shintani (2006) by using the Parzen kernel of Gallant (1987) with two lags to
compute the moments weighting matrix. The covariance matrix is robust to heteroskedasticity and autocorrelation.
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