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a b s t r a c t

Most studies assume stationarity when testing continuous-time
interest-rate models. However, consistent with Bierens [Bierens, H.
(1997). Testing the unit root with drift hypothesis against nonlin-
ear trend stationary, with an application to the US price level and
interest rate. Journal of Econometrics, 81, 29–64; Bierens, H. (2000).
Nonparametric nonlinear co-trending analysis, with an application
to interest and inflation in the United States. Journal of Business and
Economics Statistics, 18, 323–337], our nonparametric test results
support nonlinear trend stationarity. To accommodate nonstation-
arity, we detrend the interest-rate series and re-examine a variety
of continuous-time models. The goodness-of-fit improves signif-
icantly for those models with drift-induced mean reversion and
worsens for those with high volatility elasticity. The inclusion of a
nonparametric trend component in the drift significantly reduces
the level effect on the interest-rate volatility. These results suggest
that the misspecification of the constant elasticity model should
be attributed to the nonlinear trend component of the short-term
interest-rate process.
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1. Introduction

In continuous-time finance, the drift and diffusion functions of a Markov process fully characterize
the dynamics of the short-term interest rate. As noted in Chan, Karolyi, Longstaff, and Sanders (1992),
hereafter CKLS, the most important feature differentiating interest-rate models is the volatility elas-
ticity specified in the diffusion functions. The interest-rate volatility and its dependence on the level of
interest rates are critical elements in the valuation of interest-rate contingent claims and the design of
optimal strategies to hedge against interest-rate risk. Yet, the appropriate specification of this volatility
function remains, for the most part, an unanswered question.

The recent evidence on the alternative parametric specifications of the diffusion functions has pro-
vided mixed results. CKLS and Conley, Hansen, Luttmer, and Scheinkman (1997) find that the volatility
of interest-rate changes is highly sensitive to the level of the interest rate. Both studies find evidence
supporting volatility elasticity greater than one. On the other hand, Koedijk, Nissen, Schotman, and
Wolff (1997), Andersen and Lund (1997), Hong, Li, and Zhao (2004), and Cristiansen (2005) document a
substantially lower ‘level effect’. They allow for conditional heteroscedasticity in the diffusion function
of the interest rate and find that the volatility elasticity is not significantly different from 0.5, which is
in accordance with the Cox, Ingersoll, and Ross (1985), hereafter CIR SR model. Their findings indicate
that the inclusion of a ‘volatility effect’ considerably reduces the level effect.

Another stream of related studies identify nonlinearities in the interest rate. Using semi-
nonparametric approach, Aït-Sahalia (1996) finds strong nonlinearity in the drift function of the
interest rate. The same conclusion is also documented by applying a fully nonparametric approach
(e.g. Conley et al., 1997; Jiang, 1998; Stanton, 1997). A growing amount of research is directed at the
issue. For example, Pritsker (1998) adjust the finite sample properties of Aït-Sahalia’s test by taking
into account the high persistence of the interest rate. He finds that the evidence supports nonlinearity
of the interest rate disappears. Using simulation analysis, Chapman, Long, and Pearson (2000) provide
evidence that even when the true data generating process has a linear drift, the nonparametric tests
used in the above studies may still generate nonlinear estimates for the drift function. Using the data
transformation method to correct for the boundary bias of the kernel estimators, Hong and Li (2005)
strongly reject a variety of one-factor diffusion models and conclude that the inclusion of a nonlinear
drift does not improve the models’ performance. In contrast, Arapis and Gao (2006) provide an evi-
dence that the specification of the drift has a considerable impact on the pricing of derivatives through
its effect on the diffusion function. In addition, they propose a specification test of linearity in the drift.
Their results reject the null hypothesis of linearity in the drift for the short-term interest rate.

The estimation methods used in most of these studies assume that interest rates are stationary.
However, several studies provide evidence of nonstationarity in the short-term interest-rate data. Aït-
Sahalia (1996) and Bandi (2002) finds that the short-term interest rate is a unit-root process and Bierens
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(1997, 2000) documents nonlinear trend stationarity. We note therefore that the a priori assumption
of stationary interest rates generally used in continuous-time empirical finance can lead to inaccurate
inference and incorrect conclusions.

To address this issue, this paper re-examines a wide variety of well-known models for the short-
term interest rates without assuming stationarity up front. We first conduct extensive parametric
and nonparametric diagnostic tests to determine whether the short-term interest rate is stationary,
linear trend-stationary, nonlinear trend-stationary, or a unit-root process. In the case of nonlinear
trend stationarity, we use the Hamming (1973) and Bierens (1997), henceforth HB, filtering approach,
to locate the stationary component in the interest-rate process. We employ the generalized method
of moments to test the each model’s ability to capture this stationary component. In addition, we
incorporate the trend component in the drift function and examine its impact on the volatility elasticity
and the mean-reverting behavior of interest rates. To account for structural breaks, we perform tests
of unknown change points by using the techniques developed by Andrews (1993) and Andrews and
Ploberger (1994) and re-estimate the models for the several sub-periods.

Our main findings can be summarized as follows. First, our diagnostic tests indicate that the short-
term interest rate is nonlinear trend stationary, which confirms findings in Bierens (1997, 2000).
Second, for the stationary component of the interest rates, the goodness-of-fit tests show a substantial
improvement in those interest-rate models that allow for drift-induced mean reversion and a dramatic
worsening in the performance of those that allow for high volatility elasticity. Third, the introduction
of a nonlinear trend-stationary component in the drift function significantly reduces the level effect in
the diffusion function. These results suggest that the high-level effect in the previous empirical studies
can be attributed mainly to the nonlinear trend component of the short-term interest-rate process. In
addition, our sub-sample analysis shows that all mean-reverting models outperform the non-reverting
models and that the level effect and its impact on each model’s performance differ considerably across
sub-periods.

The remainder of the paper is constructed as follows. Section 2 reviews the models to be considered.
Section 3 outlines the data used. In Section 4, we describe the diagnostic tests, the estimation method,
the HB decomposition procedure, and the structural-break tests. In Section 5, we discuss the results.
Section 6 concludes.

2. The interest-rate models

As in CKLS, we consider a stochastic differential equation that encompasses a broad class of interest-
rate processes,

dr(t) = [˛ + ˇr(t)] dt + �r� dZ(t), (1)

where r(t) is the spot interest rate and Z(t) is a standard Brownian motion. We denote the stochastic
differential Eq. (1) as the unrestricted interest-rate model. We consider nine parametric special cases
of this general constant elasticity volatility (CEV) model. The specification of each nested model can
easily be obtained by setting restrictions on the parameters ˛, ˇ, � and �. The first special case under
consideration is the Merton (1973) model, which imposes the parameter restrictions ˇ = � = 0. Under
the Merton model, we note that the interest-rate process is a Brownian motion with drift.

The second case, the Vasicek (1977) interest-rate model, requires the parameter restriction � = 0.
Under the Vasicek model, the interest rate is an Ornstein–Uhlenbeck process with a restoring drift that
pushes it downwards when the process is above ˛/ˇ and upwards when it is below. The third model
is the CIR SR interest-rate process, where the interest-rate volatility depends on the square root of the
interest-rate level (� = 0.5). This process ensures positive interest rates. The fourth model appears in
Dothan (1978) and Brennan and Schwartz (1977). This model is nested in the general model (1) with
parameter restrictions ˛ = ˇ = 0 and � = 1. Thus, the Brennan–Schwartz model is a driftless interest-rate
process that allows the conditional volatility to be proportional to the interest-rate level.

The fifth model, used in Marsh and Rosenfeld (1983), imposes the parameter restrictions ˛ = 0 and
� = 1. This model for the interest rate is simply the geometric Brownian motion (GBM) introduced
by Black and Scholes (1973). The sixth model, considered in Brennan and Schwartz (1980), is mean-
reverting and has a volatility elasticity, � , equal to one. The seventh model is used in Cox, Ingersoll,
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Fig. 1. The short-term interest-rate series in levels. The data is the three-month Treasury bill rate from the Federal Reserve
Economic Database (FRED) over the sample period from January 1934 to July 2002 (826 annualized monthly observations).

and Ross (1980), henceforth CIR VR, and can be nested in the unrestricted model (1) by letting ˛ = ˇ = 0
and � = 1.5. Under this model, the interest-rate process is driftless and displays high level effects in its
conditional volatility. The eighth model, henceforth the CEV model, is the restricted constant elasticity
of variance process introduced by Cox (1975) and Cox and Ross (1976). This process only constrains
the long-term mean parameter, ˛, to be equal to zero.

3. The data

We use three-month Treasury bill yield data that cover the period from January 1934 to July 2002
and are collected from the Federal Reserve Economic Database (FRED) of the Federal Reserve Bank of
St. Louis. The data is monthly and the total number of observations is 826. We use the three-month
Treasury bill rate as a proxy for the short-term interest rate to avoid microstructure problems or
institutional features related to other money market instruments. As shown in Chapman, Long, and
Pearson (1999), the proxy problem when using the three-month Treasury bill rate is trivial in the case
of single-factor interest-rate models. In addition, the three-month Treasury bill rate has been used
recently in the term structure literature [e.g., Andersen and Lund (1997) and Stanton (1997)]. The full
series of this three-month interest rate is displayed in Fig. 1.

Table 1 shows the means, standard deviations, and first five autocorrelations of the three-month
yield and the monthly changes in the three-month yield. The unconditional average of the three-month
yield is 4.01% with a standard deviation of 3.21%. We see that the autocorrelations in both the level
and monthly changes decay significantly and are not consistently positive or negative.

4. The methodology

This section briefly describes the diagnostic tests, the generalized method of moments (GMM) of
Hansen (1982), the HB decomposition procedure, and the structural break tests of Andrews (1993) and
Andrews and Ploberger (1994).

Table 1
Descriptive statistics for the three-month Treasury bill rate.

Variables N Mean Standard deviation �1 �2 �3 �4 �5

rt 826 0.004 0.032 0.992 −0.633 0.249 −0.038 0.013
rt+1 − rt 825 0.000 0.003 0.407 −0.227 0.032 −0.029 0.036

This table reports the means, standard deviations, and autocorrelations of monthly yields and yield changes for the three-month
Treasury bill. The sample period is from January 1934 to July 2002. N is the total number of observations, rt denotes the monthly
yields, rt+1 − rt represents the monthly changes in the yields, and �j is the autocorrelation of order j.
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4.1. Diagnostic tests

In order to determine whether the interest rate is stationary, trend-stationary, nonlinear trend-
stationary, or a unit-root process, we employ several unit-root tests. First, we test the null hypothesis
of unit root against the alternative of stationary and linear trend stationary using the traditional Aug-
mented Dickey–Fuller (ADF) test, the Phillips and Perron (1988) (PP) test, and the Augmented Weighted
Symmetric (WS) test. Pantula, Gonzalez-Farias, and Fuller (1994) argue that the WS test is a weighted,
double-length regression that dominates the ADF and PP tests in terms of power. The Akaike Informa-
tion criterion (AIC) is used to determine the optimal number of lags for all the tests. We use MacKinnon
(1994) approximation, which is robust to size distortion, to compute the ADF, PP, and WS asymptotic
p-values.

Second, we employ the non-parametric method of Breitung (2002) to test for unit root against the
alternative hypotheses of stationarity and linear trend stationarity. Monte Carlo simulations show that
the Breitung test is robust to structural breaks. Finally, we employ Bierens (1997) tests where the unit
root with drift hypothesis is tested against the alternative of nonlinear trend stationarity. The t(m),
A(m), and T(m) Bierens tests are described in Appendix A. As shown in Appendix A, the Bierens tests
are based on an Augmented Dickey–Fuller auxiliary regression with linear and nonlinear deterministic
trends. For the nonlinear trend, Bierens uses transformed Chebishev polynomials that are orthogonal
to time. The null hypothesis of interest for these tests is a unit root with drift. However, a rejection
of the null does not necessarily imply that the process is nonlinear trend stationary. For example, for
the t(m) test statistic, a left-sided rejection of the null does not provide information on the alternative.
In contrast, the model-free T(m) has the power to distinguish between three hypotheses; a left-sided
rejection of the null suggests linear trend stationarity; and a right-sided rejection points in the direction
of nonlinear trend stationarity.

4.2. Goodness-of-fit tests

Following Brennan and Schwartz (1982), Dietrich-Campbell and Schwartz (1986), CKLS, and oth-
ers, we use the following discrete-time econometric specification to estimate the parameters of the
continuous-time interest-rate models:

rt+1 − rt = ˛ + ˇrt + εt+1 (2)

E[εt+1] = 0, E[ε2
t+1] = �2r2�

t . (3)

We employ the generalized method of moments (GMM) of Hansen (1982) to estimate the parame-
ters in (2) and (3) simultaneously. The GMM procedure is widely used to estimate and test interest-rate
models (see for example, CKLS, Harvey, 1988, and Longstaff, 1989). This method has relevant character-
istics for the case at hand. First, the GMM procedure does not rely on any distribution assumption. This
is an attractive feature for our analysis since not all the models under consideration have closed-form
density functions. Second, the variance–covariance matrix in the GMM procedure is consistent with
heteroscedastic and serially correlated residuals.

The estimation procedure involves minimizing the GMM criterion function, which is the quadratic
form given by

g′
T (�)WT (�)gT (�), (4)

where gT(�) is the vector of the moment conditions, WT(�) is the positive-definite symmetric weighting
matrix suggested by Hansen (1982), and � = (˛, ˇ, �2, �)′ is the vector of parameters. For comparison
purposes, we choose the same moment restrictions as in CKLS,

gT (�) = 1
T

T∑
t=1

ft(�), (5)
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where

ft(�) =

⎡
⎢⎣

εt+1
εt+1rt

ε2
t+1 − �2r2�

t

(ε2
t+1 − �2r2�

t )rt

⎤
⎥⎦ . (6)

We use the minimized value of the quadratic form in (4) to perform goodness-of-fit tests for each
model. This test statistic is �2 distributed with degrees of freedom equal to the number of orthogonality
conditions minus the number of parameters to be estimated.

4.3. The HB decomposition procedure

Using the method in Hamming (1973) and Bierens (1997), we decompose the short-term interest
rate,

rt = ct + mt (7)

where ct is the stationary component and mt is the nonlinear trend function. The trend component mt

can be written as

mt =
n−1∑

j

�j,nPj,n(t), t = 1, 2, . . . , n, where �j,n = (1/n)
n∑

t=1

mtPj,n(t), (8)

where Pj,n(t) is Chebishev time polynomials takes the form

P0,n(t) = 1, Pj,n(t) =
√

2 cos
[

j�(t − 0.5)
n

]
, j = 1, . . . , n − 1. (9)

which are orthogonal to time.
After filtering the interest-rate data and rescaling, we use the GMM estimation and specification

tests described above to examine each model’s ability to capture the stationary component of the
interest rates. This treatment also allows us to assess the impact of nonstationarity on the performance
of the competing models. For robustness, we also use an alternative detrending approach. We modify
the unrestricted model and the well-known CIR SR by incorporating the nonlinear trend component,
mt, in the drift function. This modification takes most of the time trend out of the innovation term
and, consequently, provides a better understanding of the relation between volatility elasticity and
the performance of short-term interest-rate models.

4.4. Structural break tests

The structural break tests introduced by Andrews (1993) and Andrews and Ploberger (1994) allow
for robust tests of parameter instability without assuming exogenous break points. These tests are
designed to test the hypothesis of no structural change against the alternative of one structural break.
Consequently, to examine multiple breaks, it will be more powerful to do the test several times by
excluding the periods after the breaks.

In the case of tests of one-time structural change, the null and alternative hypothesis of interest
are respectively H0: ı = 0 and Ha: ı /= 0, where 	 is the pre-break parameter vector and 	 + ı the post-
break parameter vector. Based on the Wald statistics, WT(�), Andrews (1993) construct the following
‘Supremum’ (Sup-WT) test statistic:

sup
� ∈ ˘

WT (�), (9)

where ˘ = [�1, �2] is the time interval under consideration and � is the change point in this set. For
optimality, Andrews and Ploberger (1994) design the more general ‘Exponential’ Wald test statistics
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(Exp-WT) for structural breaks,

Exp-WT = 1
�2 − �1 + 1

�2∑
�=�1

exp[0.5WT (�)]. (10)

The Exp-WT in (10) is an exponentially weighted test statistic that gives more power to alternatives
for which ı is large. For robustness, we also consider the ‘Average’ (Ave) Wald test statistics,

Ave-WT = 1
�2 − �1 + 1

�2∑
�=�1

WT (�), (11)

which is an equally weighted test statistic that is designed for alternatives that are very close to the
null hypothesis. Following Andrews (1993) and Andrews and Ploberger (1994), we allow the trimming
parameter to be between 15% and 30% of the effective sample. More recently, Hansen (1997) develops
approximation methods to calculate p-values for the Andrews (1993) and Andrews and Ploberger
(1994) tests. The hypothesis of no structural breaks in the entire parameter vector is rejected if the
p-values based on Hansen’s approximation method are below 5%.

5. The results

For comparison purposes, this section first estimates the nine models by a priori assuming sta-
tionarity and absence of structural breaks in the interest-rate process. Next, extensive diagnostic tests
determine whether the interest rate is stationary, linear trend-stationary, nonlinear trend-stationary,
or a unit-root process. Based on these test results, we examine how the models fit the stationary com-
ponent of the interest-rate series and compare these results with those obtained for the raw, aggregate
interest-rate series. To examine the robustness and implications of our results, we estimate modified
versions of the unrestricted CEV and CIR SR models that displays mean-reversion toward a nonlinear
dynamic trend. We also test for structural breaks in the aggregate interest-rate process and re-estimate
the nine models for each sub-period.

5.1. Full-sample estimation and test results

5.1.1. The case of raw, aggregate interest-rate series
Table 2 reports the parameter estimates and goodness-of-fit tests for the models when applied to

the full sample of aggregate interest-rate series. As in CKLS, we see that the ranking of the interest-rate
models can be primarily classified by the volatility elasticity parameter, � . At a conventional 5 percent
significance level, the GMM criterion tests reject all the short-term interest-rate models with � < 1, but
cannot reject most models with � ≥ 1. The two models with the highest volatility elasticity, that is, the

Table 2
Full-sample GMM estimators and goodness-of-fit using unfiltered interest-rate series.

Model ˛ ˇ �2 � �2

Unrestricted 0.0331 (0.267) −0.0079 (0.440) 0.0004 (0.185) 1.649 (1.68e−16)
Merton 0.0081 (0.301) 0.0 0.0493 (2.65e−18) 0.0 10.748 (0.0046)
Vasicek 0.0030 (0.912) −0.0021 (0.824) 0.0489 (6.14e−18) 0.0 11.031 (0.0009)
CIR SR 0.0039 (0.988) −0.0033 (0.723) 0.0174 (2.89e−21) 0.5 8.407 (0.0037)
Dothan 0.0 0.0 0.0036 (2.23e−23) 1.0 6.194 (0.103)
GBM 0.0 0.0032 (0.236) 0.0036 (9.58e−23) 1.0 4.967 (0.0835)
Brennan–Schwartz 0.0105 (0.701) −0.0003 (0.976) 0.0036 (5.04e−23) 1.0 4.920 (0.0265)
CIR VR 0.0 0.0 0.0006 (3.23e−23) 1.5 2.663 (0.447)
CEV 0.0 0.0038 (0.255) 0.0005 (0.213) 1.592 (1.12e−13) 1.221 (0.269)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the
number of parameter restrictions that each nested model imposes on the unrestricted model. The numbers in parentheses are
the p-values. The full-sample period is from 1934 to 2002.



738 H.A. Al-Zoubi / The Quarterly Review of Economics and Finance 49 (2009) 731–747

CEV (� = 1.592) and the CIR VR (� = 1.5), outperform all the other models, whereas the Vasicek model
(� = 0) with a p-value of 0.0009 ranks last.

The estimated value for � is about 1.6 for the unrestricted and CEV models, and is highly significant
for both models. This result for � is consistent with the findings in CKLS and Bandi (2002). We note,
however, that there is a trade-off between � and �2. The higher the value for � , the lower the estimated
value for the instantaneous volatility parameter, �2. In this respect, we see that the value of �2 is the
lowest for the unrestricted model and the highest for the Merton model (� = 0). The trade-off is not only
with respect to the value of these parameters, but also with respect to their statistical significance. For
all the models with � as a fixed parameter, we observe that the parameter �2 is estimated very precisely
and has a p-value almost equal to zero, whereas it is statistically insignificant in the unrestricted and
CEV models.

As to the drift function, we note that the parameter estimates do not provide a clear-cut insight
into the behavior of the drift. Consistent with CKLS, we find that all the estimates for the drift param-
eters ˛ and ˇ are statistically insignificant, and economically negligible. For the Vasicek, CIR SR,
Brennan–Schwartz, and unrestricted models, this result is often interpreted as evidence against mean-
reversion in the short-term interest rate. However, since the drift parameters are also insignificant
across the models that do not imply mean-reverting interest rates, we suggest caution when drawing
such a conclusion.

A comparison of the goodness-of-fit of models with (approximately) the same volatility elasticity,
� , shed more light on the role of the drift specification. Within each group, we notice that p-values
rank the driftless models first, the non-reverting models (either ˛ or ˇ equal to zero) second, and
the mean-reversion models last. This result suggests that the short-term interest rate behaves as a
martingale over most of the full-sample period, which is broadly consistent with the findings in Aït-
Sahalia (1996), Bandi (2002) and Stanton (1997). For example, Aït-Sahalia and Bandi find that the drift
is virtually zero over most of the range of the short-term interest rate (3–15%) and mean-reverts only
when it approaches the upper bound of its range.

Overall, we see that the driftless CIR VR model with its high level effect (� = 1.5) outperforms all
the competing models and provide a reasonable fit for the interest-rate dynamics over the full-sample
period. Bandi (2002) find similar results for the CIR VR model using daily seven-day Eurodollar deposit
rates over the period 1973–1995. Given that this model implies nonstationary behavior for the short-
term interest rate, its superior performance raises concerns about the stationarity of the interest-rate
series.

5.1.2. Diagnostic tests
Table 3 reports the results of the stationarity tests for the short-term interest rate. In Panel A, the

conventional ADF and PP tests systematically fail to reject the null hypothesis of a unit root with only a
constant term. Different choices of the lag length do not affect these results. Since these conventional
tests lack power against the alternative hypothesis of stationarity, we use the more powerful WS
test and the nonparametric Breitung test to verify these results. Similar to the conventional tests, the
WS and Breitung tests fail to reject the unit root with drift hypothesis. The failure to reject unit root
with drift in the interest-rate process corroborates with the findings in Aït-Sahalia (1996) and Bandi
(2002).

In Panel B, we present the test results for a unit root with drift and a linear trend. The ADF, PP, WS,
and Breitung tests indicate that the null hypothesis of a unit-root process for the short-term interest
rate cannot be rejected in favor of a stationary or linear trend-stationary process. Although these results
suggest modeling interest rates as unit-root processes over their full range, we should be cautious for
the following reasons. First, if the nominal interest rate follows a random walk with a positive drift
it would converge to infinity, which is not realistic. Second, if the nominal interest rate is a driftless
random walk then it allows for negative values, which is not plausible from an economic point of view.
Third, as noted in Bierens (1997), the unit-root hypothesis may prevail because some trend-stationary
and unit-root processes show a remarkable similarity. The tests considered above only take one special
case of trend stationarity into account, and ignore trend break and nonlinear trend stationarity. For a
closer examination of the nonstationarity of the short-term interest rate, we consider the more general
trend stationarity alternative hypothesis designed by Bierens (1997).
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Table 3
Nonstationarity test results for the short-term interest rates.

Test Test statistic p-value

Panel A: Unit-root tests with a constant
ADF −2.242 0.466
PP −12.398 0.295
WS −2.445 0.327
Breitung 0.0104 0.421a

Panel B: Unit-root tests with a constant and a linear trend
ADF −2.045 0.170
PP 8.389 0.199
WS −2.141 0.228
Breitung 0.0587 0.386a

Panel C: Bierens tests of unit-root with drift against nonlinear trend stationarity

Test Test statistic 5% critical value Simulated p-value

t(m) −3.985 −3.971 0.421
A(m) −40.22 −27.20 0.049
T(m) 326.78 280.57 0.040

ADF: Augmented Dickey–Fuller test; PP: Phillips–Perron test; and WS: Weighted Symmetric test. The lag
length is equal to 19. We implement the nonstationarity tests for the level of the short-term interest rate
covering the period from 1934 to 2002. The null hypothesis of a unit root is rejected if the p-value is smaller
than 0.05. The ADF, PP, and WS asymptotic p-values are computed using MacKinnon (1994) approximation,
which is robust to size distortion.
The Beirens t(m), A(m) and T(m) tests are described in Section 4.1. m = 10 is the order of the Chebishev
polynomial. For the Bierens T(m) test, a right-sided rejection of the null hypothesis of unit root is an indication
of nonlinear trend stationarity. We use simulated p-value based on 1000 replications drown from the normal
distribution with zero mean and OLS squared residuals variances (the Wild bootstrap).

a For the Breitung test, we use simulated p-value based on 1000 replications drown from the normal
distribution with zero mean and OLS squared residuals variances (the Wild bootstrap).

Panel C reports the t(m), A(m), and T(m) test statistics for the unit-root null hypothesis against a
nonlinear trend stationarity. We see that all these tests reject the unit-root null hypothesis at the 5%
level on the basis of the asymptotic critical values. The value of −3.985 for the t-test statistic implies
a left-sided rejection of the null hypothesis. As pointed out by Bierens (1997), for the t-test statistic, a
left-sided rejection of the null does not provide information about the nature of the alternative. In this
respect, we note that the T(m) test statistic is more informative. In particular, we find that the T(m) test
statistic rejects the null on the right-side, which is an indication that nonlinear trend stationarity is the
alternative. Consistent with Bierens (1997, 2000), we conclude therefore that the short-term interest
rate is nonlinear trend stationary.

5.2. The case of detrended interest-rate series

Given the nonlinear trend stationarity of the interest-rate series, we use the HB-filter to detrend
the series and examine each model’s ability to capture the stationary component of the interest rate.
Table 4 reports the parameter estimates and goodness-of-fit tests for the models applied to the full
sample of filtered interest-rate series. We notice that the ranking of the model performances is no
longer based on the high volatility elasticity, but rather on the drift specification of each model. The
goodness-of-fit of all the models with mean-reverting drift improve considerably. The overidentifying
restrictions of the mean-reverting Brennan–Schwartz and CIR SR models cannot be rejected at the
conventional 5% level. In contrast, there is considerable worsening in the performance of the driftless
models. The p-value of the goodness-of-fit statistic for the Dothan, CEV and CIR VR model decreases
dramatically from 0.103, 0.269 and 0.447 to 0.505, 0.0011 and 0.0078, respectively, implying strong
rejection of the last two models. This result suggests that for the stationary series a mean-reverting
drift is the most important feature of the interest-rate model.
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Table 4
Full-sample GMM estimators and goodness-of-fit using detrended interest-rate series.

Model ˛ ˇ � 2 � �2

Unrestricted 0.0007 (0.02111) −0.0175 (0.09179) 0.05380 (0.5432) 1.3869 (0.0000)
Merton 0.0002 (0.0383) 0.0 0.0000 (0.0000) 0.0 7.7277 (0.0209)
Vasicek 0.0002 (0.3680) −0.0016 (0.8544) 0.0000 (0.0000) 0.0 7.7793 (0.0052)
CIR SR 0.0007 (0.1792) −0.0057 (0.5247) 0.0002 (0.0000) 0.5 4.6130 (0.0317)
Dothan 0.0 0.0 0.0052 (0.0000) 1.0 7.7921 (0.0505)
GBM 0.0 0.0053 (0.0952) 0.0051 (0.0000) 1.0 4.8200 (0.0898)
Brennan–Schwartz 0.0005 (0.0476) −0.0120 (0.1978) 0.0053 (0.0000) 1.0 1.3239 (0.2498)
CIR VR 0.0 0.0 0.0953 (0.0000) 1.5 9.1009 (0.0279)
CEV 0.0 0.0053 (0.0960) 0.0049 (0.6395) 0.9933 (0.0046) 4.8077 (0.0283)
Modified unrestricted 0.0002 (0.6470) −0.0002 (0.9803) 0.0057 (0.42956) 1.05024 (0.00002)
Modified CIR SR 0.0003 (0.5636) 0.0011 (0.9139) 0.0002 (0.0000) 0.5 11.2354 (0.18871)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the number
of parameter restrictions that each nested model imposes on the unrestricted model. The interest-rate data is detrended using
10 Chebishev time polynomials filtering technique. The numbers in parentheses are the p-values. The full-sample period is
1934–2002.

When comparing the performance within the mean-reverting class of interest-rate models, we
observe that the level effect still plays an important role in the performance of the models. The p-
value ranks the Brennan–Schwartz (� = 1) first, CIR SR (� = 0.5) second, and Vasicek (� = 0) last in the
mean-reverting group. Within the non-reverting models, we find that a higher value for � does not
necessarily improve the performance of the model. For example, the CEV model with an estimate of
0.993 for � has a higher p-value than the CIR VR (� = 1.5). In addition, we see that for the unrestricted
and CEV models the volatility elasticity decreases from 1.649 and 1.592 to 1.386 and 0.993, respectively,
when we detrend the interest rate. This result suggests that for the stationary series a mean-reverting
drift with unitary elasticity is the most important feature of the interest-rate model.

Our findings suggest that the evidence on high volatility elasticity and weak drift-induced mean
reversion documented in the literature is primarily due to the nonlinear trend component of the short-
term interest rate. The a priori assumption of stationarity when specifying and testing interest-rate
models implicitly shifts all the nonstationarity in the innovations and makes the drift specification less
relevant for the overall performance of the models. To verify our results, we introduce the nonlinear
trend component, mt, in the drift function of the CIR SR and the unrestricted model.1 This alternative
detrending procedure allows us to take (most of) the nonstationarity out of the diffusion term.

The last two rows of Table 4 report the results for the nonlinear trend-stationary models of short-
term interest rates. The goodness-of-fit test shows substantial improvement for the nonlinear trend-
stationary CIR SR model relative to the standard counterpart. Specifically, the p-value of the goodness-
of-fit statistic sharply increases from 0.003 to 0.188 for the CIR SR model. In addition, we see that for
the unrestricted model the volatility elasticity decreases from 1.649 to 1.050 when we accommodate
for trend stationarity.

5.3. Sub-sample analysis

5.3.1. Structural break tests
Table 5 presents the results of the structural break tests for the unrestricted model of interest-rate

dynamics. The p-values of the Sup-WT statistics in Fig. 2 suggest three potential structural changes. The
first eventual change point is at the beginning of 1970, the second is mid 1974, and the third occurs
between October 1979 and October 1981, which is commonly known as the ‘Monetary Experiment’
period of the Federal Reserve System. Following Andrews (1993), we only consider that point where

1 We choose only two models to keep the presentation of the results manageable. We select the CIR SR model because it is
the most popular mean-reverting model and ensures positive nominal interest rate. The CEV model allows us gauge the impact
of the nonlinear trend component on the volatility elasticity.
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Table 5
Test results for parameter stability and structural breaks with unknown change points.

Period Test statistics Max date

Sup-WT Ave-WT Exp-WT

January 1934–July 2002 28.369 (0.000) 5.747 (0.0215) 8.052 (0.000) April 1981
January 1934–April 1981 12.204 (0.0262) 5.567 (0.0332) 3.940 (0.0220) June 1973
January 1934 – June 1973 10.024 (0.0563) 4.394 (0.0792) 3.054 (0.0544) October 1969

The Sup-WT , Ave-WT , and Exp-WT are the supremum, average, exponential average of the Wald statistics for testing the null
hypothesis of no structural breaks at unknown change points. These tests of structural breaks and parameter instability are
applied to the unrestricted model in equation (1). The numbers in parentheses are the p-values. The Max date in the last column
is the point where the maximum value of the Wald statistic occurs during the time interval considered.

the maximum value of the statistic occurs as the single structural break. Since the p-value of the Sup-
WT statistic in the third period reaches its single trough on April 1981, we consider April 1981 as a
structural break-date. The findings in Table 5 provide strong evidence in favor of a structural break at
the beginning of 1981, when the interest rate begins to decline substantially. The results are robust
across the Sup, Ave, and Exp tests since all p-values in the first row of Table 5 indicate a rejection of the
null hypothesis of parameter stability at the 5% significance level.

To test if the model displays more structural breaks, we exclude the period after April 1981 from
the effective sample and run the test again. The results are reported in the second row of Table 5.
The test-statistics suggest that another structural break occurred in June 1973 when the Fed begins
to implement the federal-fund operating procedure for the period spanning September 1972–October
1979. We also follow the same procedure to test for the existence of a third break. Fig. 2 seems to
suggest that the third structural breakpoint is October 1969. However, based on the p-values in the
third row of Table 5, we see that the Sup, Ave, and Exp tests statistics cannot reject the hypothesis of
parameter stability during this sub-period.

5.3.2. The case of raw, aggregate interest-rate series
In Table 6, the goodness-of-fit tests indicate that most of the models are rejected by the raw interest-

rate data for the sub-period from January 1934 to June 1973. We observe that the models with moderate

Fig. 2. The Andrew’s Sup-WT statistics for structural breaks. This graph plots the p-values for the supremum of the Wald statistics
for the period from 1934 to 2002. The horizontal doubled-line represents the 5% p-values. At a conventional 5% level, one rejects
the null hypothesis of no structural breaks for the values of the supremum that are below this horizontal line.
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Table 6
GMM estimators and goodness-of-fit for the sub-period 1934–1973.

Model ˛ ˇ � 2 � �2

Unrestricted 0.0065 (0.545) 0.0042 (0.559) 0.0015 (0.0031) 0.579 (1.51e−06)
Merton 0.0154 (0.0229) 0 0.0209 (2.01e−08) 0 23.657 (7.29e−06)
Vasicek 0.0104 (0.328) 0.0035 (0.626) 0.0209 (2.82e−08) 0 23.728 (1.11e−06)
CIR SR 0.0075 (0.474) 0.0037 (0.607) 0.0177 (7.10e−15) 0.5 0.485 (0.486)
Dothan 0 0 0.0039 (9.68e−14) 1.0 9.130 (0.0276)
GBM 0 0.0077 (0.0923) 0.0039 (1.41e−13) 1.0 6.482 (0.0391)
Brennan–Schwartz 0.0025 (0.810) 0.0067 (0.361) 0.0039 (1.76e−13) 1.0 6.472 (0.0109)
CIR VR 0 0 0.0007 (3.27e−11) 1.5 18.494 (0.0003)
CEV 0 0.0076 (0.0988) 0.0142 (0.0037) 0.590 (1.25e−06) 0.366 (0.545)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the
number of parameter restrictions that each nested model imposes on the unrestricted model. The numbers in parentheses are
the p-values.

levels of volatility elasticity, the CEV (� = 0.590) and CIR SR (� = 0.5), outperform the other competing
models. This result indicates that the volatility is less sensitive to the interest-rate level during this low
interest-rate period. We also note that the estimates for volatility parameter � are substantially lower
than those for the full-sample estimates. In addition, the positive sign for the ˇ estimates indicate lack
of mean-reversion during this sub-period.

In Table 7, the p-values suggest that all the high-volatility elasticity models perform relatively well
during the sub-period 1973–1981. In contrast, all the models with � < 1 are rejected by the data. With
a p-value of 0.269, we observe that the driftless CIR VR model provides the best fit for the interest-
rate data, whereas the mean-reverting models, such as Vasicek and CIR SR, perform very poorly. The
estimates for the � parameter are highly significant and those for the drift coefficients are insignificant
during this high volatility regime of 1973–1981. The negative, but statistically insignificant value for
the estimate of the speed of adjustment parameter, ˇ, in the unrestricted model provides very weak
evidence of drift-induced mean-reversion.

In Table 8, we see that all the models, except Vasicek and CIR SR, provide a good fit for the sub-period
1981 to 2002. The estimate for � is around 1.94 for both the unrestricted and CEV, which implies that
the level effect is higher than in the other sub-periods. We see that most models with � ≥ 1 outperform
those with � < 1. In contrast to the high-volatility sub-period, we see however that not all the models
with � < 1 are rejected by the raw interest-rate data. Specifically, the Merton model with � = 0 cannot
be rejected at the conventional 5% level and even outperforms the mean-reverting Brennan–Schwartz
model, which has relatively high volatility elasticity. This seemingly conflicting result can be explained
by the fact that this sub-period is primarily characterized by (non-monotonically) declining interest
rates rather then high volatilities. The sharp downward trend in the short-term interest rate can be
accommodated by either high volatility elasticity or negative expected growth rate as, for example, in

Table 7
GMM estimators and goodness-of-fit for the sub-period 1973–1981.

Model ˛ ˇ �2 � �2

Unrestricted 0.338 (0.206) −0.0375 (0.363) 0.0012 (0.316) 1.451 (4.61e–10)
Merton 0.0942 (0.0898) 0 0.236 (2.48e−05) 0 6.965 (0.0307)
Vasicek 0.218 (0.408) −0.0182 (0.652) 0.243 (5.16e−05) 0 7.205 (0.0073)
CIR SR 0.345 (0.204) −0.0336 (0.415) 0.0433 (1.42e−05) 0.5 6.416 (0.0113)
Dothan 0 0 0.0064 (8.78e−07) 1.0 6.555 (0.0875)
GBM 0 0.0133 (0.114) 0.0060 (7.27e−06) 1.0 4.171 (0.124)
Brennan−Schwartz 0.345 (0.199) −0.0371 (0.368) 0.0072 (8.14e−06) 1.0 2.461 (0.0117)
CIR VR 0 0 0.0009 (6.318−07) 1.5 3.934 (0.269)
CEV 0 0.0134 (0.114) 0.0007 (0.298) 1.541 (2.94e−11) 1.487 (0.223)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the
number of parameter restrictions that each nested model imposes on the unrestricted model. The numbers in parentheses are
the p-values.
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Table 8
GMM estimators and goodness-of-fit for the sub-period 1981–2002.

Model ˛ ˇ �2 � �2

Unrestricted 0.120 (0.307) −0.0280 (0.213) 6.87e−05 (0.617) 1.945 (5.20e−06)
Merton −0.0270 (0.101) 0 0.0548 (7.85e−09) 0 4.553 (0.103)
Vasicek −0.0268 (0.773) −6.94e−05 (0.997) 0.0541 (1.21e−08) 0 5.061 (0.0245)
CIR SR −0.0186 (0.841) −0.0018 (0.920) 0.0107 (2.86−09) 0.5 4.692 (0.0303)
Dothan 0 0 0.0017 (4.75e−09) 1.0 5.332 (0.149)
GBM 0 −0.0054 (0.0911) 0.0018 (1.07e−09) 1.0 3.594 (0.165)
Brennan–Schwartz 0.0030 (0.974) −0.0060 (0.738) 0.0018 (1.07e−09) 1.0 3.846 (0.0498)
CIR VR 0 0 0.0003 (2.94e−09) 1.5 4.240 (0.237)
CEV 0 −0.0052 (0.0983) 5.38e−05 (0.562) 1.942 (6.83e−06) 1.029 (0.310)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the
number of parameter restrictions that each nested model imposes on the unrestricted model. The numbers in parentheses are
the p-values.

the Merton model (˛ = −0.0270). In contrast, the drift-induced mean-reversion cannot capture these
abrupt downward movements and are therefore not well suited for this third sub-period.

5.3.3. The case of detrended interest-rate series
In Table 9, the goodness-of-fit tests indicate that none of the mean-reverting models are rejected by

the detrended interest-rate data for the sub-period from January 1934 to June 1973. The p-value ranks
the Vasicek (� = 0) first, CIR SR (� = 0.5) second, and Brennan–Schwartz (� = 1) third across the nine
models. Within the non-reverting models, we also find that a higher value for � harms the performance
of the model. The p-value ranks the Merton (� = 0) first, Dothan (� = 1) second, and CIR VR (� = 1.5)
third within the non-reverting group. As for the diffusion function, we find that the estimates for the
diffusion parameters, �2 and � , are statistically insignificant for both the unrestricted and CEV models.
These parameter estimates provides further evidence of the insignificant role of the drift specification
in capturing the dynamics of the stationary component of the interest rates. In addition, the statistically
negative sign for the ˇ estimates provide strong evidence of mean-reversion during this sub-period.

In Table 10, the p-values suggest that all the mean-reverting models outperform the non-
reverting models during the sub-period 1973–1981. The p-value of the goodness-of-fit statistic for
the Brennan–Schwartz (� = 1), CIR SR (� = 0.5), and Vasicek (� = 0) model increases sharply from 0.011,
0.011, and 0.007 to 0.550, 0.296, and 0.194, respectively, implying strong acceptance of those models. In
contrast, to the first sub-period, we see that the level effect plays an important, albeit secondary, role
in the performance of the mean-reverting group where mean-reverting models with high volatility
elasticity outperform the rest of the mean-reverting models. However, there is considerable worsening
in the performance of the non-reverting high volatility elasticity models. For example, the p-value of
the goodness-of-fit statistic for the CIR VR (� = 1.5) and CEV model decreases dramatically from 0.269

Table 9
GMM estimators and goodness-of-fit using detrended interest-rate series for the sub-period 1934–1973.

Model ˛ ˇ �2 � �2

Unrestricted −0.0085 (0.7999) 0.0017 (0.7972) 1.01e−8 (0.9948) 1.6206 (0.9732)
Merton 7.96e−06 (0.9282) 0.0 3.02e−06 (1.01e−11) 0.0 4.3570 (0.1132)
Vasicek 0.0014 (0.0246) −0.0673 (0.0241) 3.24e−06 (5.01e−13) 0.0 0.1506 (0.6979)
CIR SR 0.0014 (0.0271) −0.0664 (0.0259) 0.00015 (0.0000) 0.5 0.5220 (0.4699)
Dothan 0.0 0.0 0.0057 (1.50e−11) 1.0 6.8500 (0.0768)
GBM 0.0 −0.0022 (0.5836) 0.0058 (1.12e−11) 1.0 6.4497 (0.0397)
Brennan–Schwartz 0.0013 (0.0330) −0.0643 (0.0310) 0.0061 (1.07e−12) 1.0 2.9706 (0.0847)
CIR VR 0.0 0.0 0.2238 (2.17e−11) 1.5 9.599 (0.0222)
CEV 0.0 −0.0028 (0.4063) 0.0053 (0.8115) 0.8321 (0.7384) 7.0114 (0.0341)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the number
of parameter restrictions that each nested model imposes on the unrestricted model. The interest-rate data is detrended using
10 Chebishev polynomials filtering technique. The numbers in parentheses are the p-values.
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Table 10
GMM estimators and goodness-of-fit using detrended interest-rate series for the sub-period 1973–1981.

Model ˛ ˇ �2 � �2

Unrestricted 0.0143 (0.0020) −0.3570 (0.0040) 0.3558 (0.7840) 1.3714 (0.0167)
Merton 0.0009 (0.2086) 0.0 0.00004 (1.52e−06) 0.0 3.9562 (0.1383)
Vasicek 0.0117 (0.0077) −0.2850 (0.0150) 0.00003 (0.0001) 0.0 1.6797 (0.1949)
CIR SR 0.0124 (0.0047) −0.3071 (0.0093) 0.0010 (0.0004) 0.5 1.0882 (0.2968)
Dothan 0.0 0.0 0.0256 (0.00006) 1.0 5.6262 (0.1312)
GBM 0.0 0.0169 (0.3925) 0.0272 (0.00003) 1.0 4.8028 (0.0905)
Brennan–Schwartz 0.0136 (0.0026) −0.3387 (0.0052) 0.0314 (0.0007) 1.0 0.3557 (0.5508)
CIR VR 0.0 0.0 0.6091 (0.0001) 1.5 5.7172 (0.1262)
CEV 0.0 0.0196 (0.3387) 0.0024 (0.9223) 0.6558 (0.6759) 4.9695 (0.0257)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the number
of parameter restrictions that each nested model imposes on the unrestricted model. The interest-rate data is detrended using
10 Chebishev polynomials filtering technique. The numbers in parentheses are the p-values.

and 0.223 to 0.126 and 0.0257, respectively. In addition, the significant negative sign for the parameter
ˇ estimates suggest that the short-term rate is mean-reverting during this sub-period.

In Table 11, we also see that the mean-reverting models provide the best fit for the sub-period
1981–2002. As in the second sub-period, the p-value ranks the Brennan–Schwartz (� = 1) first, CIR SR
(� = 0.5) second, and Vasicek (� = 0) third across the nine models. Within the non-reverting group, we
find that a higher value for � does not necessarily improve the performance of the model. For example,
the CEV model with an estimate of 3.306 for � has a lower p-value than the CIR VR (� = 1.5). In addition,
we see that for the unrestricted and CEV models the volatility elasticity decreases from 1.649 and 1.592
to 1.386 and 0.993 when we detrend the interest rate. In addition, the significant negative sign for the
parameter ˇ estimates suggest that the detrended short-term rate is mean-reverting during this sub-
period. This result suggests that for the stationary series a mean-reverting drift with high elasticity is
the most important feature of the interest-rate model after 1973.

Clearly, these results for stationary component contradict those for the aggregate interest-rate
series. In particular, for the filtered interest-rate series, we find strong evidence of mean-reversion
and moderate level effects, whereas for the aggregate series, we find that a driftless model with high
volatility elasticity outperforms all the competing models. In reconciling these opposing results, we
note that mean-reversion can be induced by both the drift and diffusion function. Conley et al. (1997)
show that, in essence, mean-reversion is determined by the ratio between the drift and two times
the diffusion function. The ability of the latter to generate mean-reversion depends primarily on the
values of diffusion parameters and the current interest-rate level. The higher these values, the greater
the pull towards the center of the distribution. For the aggregate interest-rate process, this implies that
the diffusion function captures the mean-reverting behavior and high level effects simultaneously,

Table 11
GMM estimators and goodness-of-fit using detrended interest-rate series for the sub-period 1981–2002.

Model ˛ ˇ �2 � �2

Unrestricted 0.0072 (0.0036) −0.1181 (0.0045) 0.3243 (0.7991) 1.7572 (0.0138)
Merton 0.0002 (0.4003) 0.0 0.00001 (0.0002) 0.0 5.8803 (0.0528)
Vasicek 0.0053 (0.0177) −0.0851 (0.0223) 0.00001 (0.0007) 0.0 2.4215 (0.1196)
CIR SR 0.0057 (0.0098) −0.0933 (0.0122) 0.0002 (0.0004) 0.5 1.5562 (0.2122)
Dothan 0.0 0.0 0.0047 (0.0001) 1.0 7.2818 (0.0634)
GBM 0.0 0.0027 (0.5530) 0.0045 (0.0004) 1.0 6.9826 (0.0304)
Brennan–Schwartz 0.0062 (0.0056) −0.1013 (0.0073) 0.0046 (0.0003) 1.0 0.7463 (0.3876)
CIR VR 0.0 0.0 0.0726 (0.0003) 1.5 0.0003 (0.0222)
CEV 0.0 −0.0033 (0.4624) 0.4400 (0.9999) 3.3069 (0.9987) 7.9924 (0.0461)

�2 is the test-statistic for the GMM overidentifying restrictions of each interest-rate model. The degree of freedom is the number
of parameter restrictions that each nested model imposes on the unrestricted model. The interest-rate data is detrended using
10 Chebishev polynomials filtering technique. The numbers in parentheses are the p-values.
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whereas the drift parameterization is almost superfluous.2 However, this critical role of the diffusion
function disappears when we detrend the interest-rate series.

Our findings suggest that the evidence on high volatility elasticity and weak drift-induced mean
reversion documented in the literature is primarily due to the nonlinear trend component of the short-
term interest rate. The a priori assumption of stationarity when specifying and testing interest-rate
models implicitly shifts all the nonstationarity in the innovations and makes the drift specification
less relevant for the overall performance of the models.

6. Conclusion

In this paper, we have re-examined a wide variety of interest-rate models. We employ a wide range
of unit-root tests to evaluate the stationary hypothesis of the short-term interest rate. Consistent with
Bandi (2002), the unit-root hypothesis cannot be rejected when it is tested against the stationary and
linear trend-stationary hypotheses. However, as in Bierens (1997), we find that the unit-root hypothesis
is rejected when it is tested against the alternative of non-linear trend stationary.

We locate the stationary component of the interest-rate process using the Hamming (1973) and
Bierens (1997) filtering approach and examine the ability of the interest-rate models to capture this
component. The analysis shows that the performances of all mean-reverting models (even those mod-
els which assume homoscedastic interest-rate volatility) show dramatic improvement in the presence
of stationarity. In contrast, we document a significant decline in the performance of the models with
high volatility elasticity.

To verify these findings, we incorporate the trend component in the drift function of the CIR SR and
the unrestricted CEV model. This modification substantially improves the performance of the CIR SR
and reduces the level effect of the unrestricted model. Our results suggest that the evidence on high
volatility elasticity documented in the literature is primarily due to the nonlinear trend component of
the raw interest-rate series.

The sub-sample analysis shows that all the mean-reverting models outperform the non-reverting
models. In addition, the sub-sample results show that both the magnitude and importance of volatility
elasticity vary considerably across sub-periods. During the sub-period of low and slowly increasing
interest rates, we see that volatility elasticity is relatively low and the homoscedastistic models outper-
form the hetroscedastic models. For the high-volatility regime and in the presence of sharply declining
interest rates the volatility elasticity plays a secondary role in the models specification.
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Appendix A.

As in Bierens (1997), we use the following auxiliary regression for the t(m) and A(m) unit-root tests,


rt = ˛rt−1 +
p∑

j=1

�j
rt−j + �T P(m)
t,n + εt, (12)

where P(m)
t,n = (P∗

0,n(t), P∗
1,n(t), . . . ..P∗

m,n(t))T are transformed Chebishev polynomials that are orthogo-
nal to t. The t(m) and A(m) test statistics can be computed based on the following specifications:

t(m) = ˆ̨
s ˆ̨

, (13)

2 We find similar results when we examine the performance of the nonlinear drift specification proposed by Aït-Sahalia
(1996).
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A(m) = n ˆ̨⎛
⎝1 −

p∑
j=1

�̂j

⎞
⎠

. (14)

The model-free T(m) test is based on the following specification:


rt = −�rt−1 + 	0 + �	1t + �(1,m)T
P(1,m)

t,n + ut, � ∈ {0, 1}, (15)

where �(1,m) = (�1, �2 . . . ..�m)T and P(1,m)
t,n = (P∗

1,n(t), P∗
2,n(t), . . . ..P∗

m,n(t))T . Bierens suggests the fol-
lowing test statistic:

T(m) = n

[
n∑

t=1


rtP
(1,m)
t,n − �̂1P(1,m)

n+1,n − �̂2P(1,m)
1,n

]T [
n∑

t=1


rtP
(1,m)
t,n − �̂1P(1,m)

n+1,n − �̂2P(1,m)
1,n

]
n∑

t=1

(rt − �̂T P(m)
t,n )

2
(16)

where �̂1 and �̂2 are least squared coefficients of regressing
n∑

t=1


rtP∗
k,n

(t) on P∗
k,n

(n + 1) and P∗
k,n

(1) for

k = 1, . . ., m.
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