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a b s t r a c t

We consider the time dependent Darcy problem in a three-dimensional axisymmetric
domain and, by writing the Fourier expansion of its solution with respect to the angular
variable, we observe that each Fourier coefficient satisfies a system of equations on the
meridian domain. We propose a discretization of these equations in the case of general
solution. This discretization relies on a backward Euler’s scheme for the time variable and
finite elements for the space variables. We prove a posteriori error estimates that allow
for an efficient adaptivity strategy both for the time steps and the meshes. Computations
for an example with a known solution are presented which support the a posteriori error
estimate.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω̆ be a bounded axisymmetric domain in R3. The boundary Γ̆ of this domain is divided into two parts Γ̆p and Γ̆u. We
are interested in the following model, suggested by Rajagobal [1],⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t ŭ + αŭ + gradp̆ = f̆ in Ω̆×]0, T [,

divŭ = 0 in Ω̆×]0, T [,

p̆ = p̆b on Γ̆p×]0, T [,

ŭ · n̆ = ğ on Γ̆u×]0, T [,

ŭ = ŭ0 in Ω̆ at time t = 0.

(1.1)

where the unknowns are the velocity ŭ and the pressure p̆ of the fluid. The data are the quantities f̆ , ğ , the pressure on the
boundary p̆b and the initial value of the velocity ŭ0. The parameter α is a positive constant representing the drag coefficient.
This model can represent the time-dependent flow of an incompressible fluid such as water in a rigid porous material. If the
problem is set in a domain which is symmetric by rotation around an axis, it is proved in [2] that, when using the Fourier
expansion with respect to the angular variable, a three-dimensional problem is equivalent to a system of two-dimensional
problems on the so-called meridian domain noted Ω and defined below, see (2.1). Each obtained problem being satisfied
by a Fourier coefficient of the solution. We recall that in [3], the present problem has already been considered in the case
of an axisymmetric solution, in the other words, for the Fourier coefficient of order k = 0. In the present paper, we will
extend the analysis in the case of a general solution, i.e. for the Fourier coefficient of order k, k ∈ Z. We will deal with
the instationary Darcy system in three-dimensional axisymmetric geometries and propose its discretization in order to
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approximate this general solution. We also recall that the problem considered in [4] which is similar to the present model
is restricted to a boundary condition for the pressure and when the domain is a general two- or three-dimensional with a
Lipschitz-continuous boundary. So, in the present study, we shall handle the mixed boundary conditions which are more
realistic from a physical point of view. indeed, most often, only one of these conditions can be measured on part of the
boundary.

Up to our knowledge, the first work that has been done on the a priori analysis of the present problem is due to Orfi
et al. [5]. The aim of this paper is to perform the a posteriori analysis of the discretization.

Several work has been done concerning the a posteriori analysis of parabolic type problems. In [6–8] the idea consists
in establishing a full time and space variational formulation of the continuous problem and using a discontinuous Galerkin
method for the discretization with respect to all variables.

In this work, following the approach of [9], which consists in introducing different types of error indicators: one for the
time discretization and another for the space discretization, we perform the a posteriori error analysis and prove optimal
estimates of the error according to the standard criteria see [10] for a review of the main results in a posteriori analysis.
Therefore the error indicators that we propose seem appropriate tools for performing time and space adaptivity in an
efficient way. Our analysis is performed when the boundary conditions and the external forces are assumed in general
case. Therefore, axisymmetric problems without any assumption on the data can be transformed into problems which are
invariant by rotation see [11, Chap I, prop 1.2.8]. A natural way for reducing axisymmetric problems on Ω̆ to a family of
problems on the meridian domain Ω , which we will make precise later, relies on the use of Fourier expansions with respect
to the angular variable θ .

The paper is organized as follows: In Section 2, we start by writing the variational formulation of problem (1.1) in the
case of an axisymmetric domain, its well-posedness and also the error arising from Fourier truncation. Next, we describe
the discrete problem in the meridian domain Ω in Section 3. The error due to Fourier truncation which was appropriately
evaluated in [5] is also devoted in this section. We introduce two families of error indicators in Section 4: one corresponds
to the time discretization and others associate to the finite element space. We then perform the a posteriori analysis of the
discrete problem in several steps. Section 5 is devoted to the description of the adaptivity strategy we use . In Section 6, we
present some numerical experiments. Finally, Conclusion 7 concerns the main concluding remarks.

2. The two-dimensional problems

Let (x, y, z) be a set of Cartesian coordinates in R3 such that Ω̆ is invariant by rotation around the axis x = y = 0. We
introduce the system of cylindrical coordinates (r, θ, z), with r ≥ 0 and−π ≤ θ < π , defined by x = r cos θ and y = r sin θ .
If Γ0 denotes the intersection between Ω̆ and axis r = 0, then there exists an open bounded domain Ω in R+ ×R such that

Ω̆ = {(r, θ, z); (r, z) ∈ Ω ∪ Γ0 and − π < θ ≤ π} . (2.1)

The set Ω is called meridian domain. For simplicity, we assume that Γ0 is the union of a finite number of segments with
positive measure. The two-dimensional axisymmetric boundary Γ̆ of the physical domain Ω̆ is a Lipschitz-continuous
boundary and is divided into two parts Γ̆p and Γ̆u, also with Lipschitz continuous boundaries. The part of the boundary
Γ̆p has a positive surface measure. Γ̆u = Γ̆ \ Γ̆ p is the union of a finite number of surface elements. Setting Γ = ∂Ω \ Γ0
and rotating Γ around the axis r = 0 gives back Γ̆ , and Γ0 is a kind of artificial boundary. We also introduce the two parts
Γp and Γu = Γ \ Γ p of the boundary Γ . The unit outward normal vector n̆ on Γ̆ is obtained by rotating the unit outward
vector n on Γ .

Each solution of the Darcy equations admits a Fourier expansion with respect to the angular variable θ .

2.1. Fourier expansion

For any function v̆ defined on Ω̆ , we associate the Fourier coefficients of the corresponding function v on Ω , defined for
any k in Z by

vk(r, z) =
1

√
2π

∫ π

−π

v(r, θ, z) e−ikθdθ, v(r, θ, z) =
1

√
2π

∑
k∈Z

vk(r, z)eikθ .

We also introduce the k-dependent operators gradkp and divkv defined respectively for scalar functions p and on vector
fields v by

gradkp = (∂rp,
ik
r
p, ∂zp) and divkv = ∂rvr +

1
r
vr +

ik
r

vθ + ∂zvz .

It is checked in [11, IX.1] that (ŭ, p̆) is solution to problem (1.1) if and only if the pairs (uk, pk), k ∈ Z, are solutions to the
system of two-dimensional problems⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tuk
+ αuk

+ gradkpk = f k in Ω×]0, T [,

divkuk
= 0 in Ω×]0, T [,

pk = pkb on Γp×]0, T [,

uk
· n = gk on Γu×]0, T [,

uk
= uk

0 in Ω at t = 0.

(2.2)
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We now describe the weighted Sobolev spaces which are needed for the variational formulations of these problems, next
we write these formulations, we recall their well-posedness and the error arising from Fourier truncation.

2.2. The weighted Sobolev spaces

Consequently, this reduction to 2-D problems requires the numerical analysis to be studied in suitably weighted Hilbert
spaces, which deal with complex-valued functions due to Fourier expansions, see for instance [2, Sec. II.2]:

L2
±1(Ω) =

{
v : Ω → Cmeasurable;

∫
Ω

|v(r, z)|2 r±1 dr dz < +∞

}
,

H1
1 (Ω) =

{
v ∈ L21(Ω); ∂rv ∈ L21(Ω) and ∂zv ∈ L21(Ω)

}
,

H1
1⋄(Ω) =

{
q ∈ H1

1 (Ω); q = 0 on Γp
}
,

and V 1
1 (Ω) = H1

1 (Ω) ∩ L2
−1(Ω), V 1

1⋄(Ω) = V 1
1 (Ω) ∩ H1

1⋄(Ω).

All these spaces are provided with the norms which result from their definitions.
For any k ∈ Z, we denote by H1

(k)(Ω) the following spaces

H1
(k)(Ω) =

{
H1

1 (Ω) if k = 0,

V 1
1 (Ω) if |k| ≥ 1,

equipped with norms and seminorms:

∥v∥H1
(k)(Ω) =

(
∥v∥

2
H1
1 (Ω)

+ |k|2 ∥v∥
2
L2
−1(Ω)

) 1
2

and |v|H1
(k)(Ω) =

(
|v|

2
H1
1 (Ω)

+ |k|2 ∥v∥
2
L2
−1(Ω)

) 1
2

.

We also define the subspaces H1
(k)⋄(Ω) = H1

(k)(Ω) ∩ H1
1⋄(Ω). Note that the equivalence of the norm ∥·∥H1

(k)(Ω) and seminorm

|·|H1
(k)(Ω) on H1

(k)⋄(Ω), which is obvious for k ̸= 0, also holds for k = 0 (see [2, Thm. II.3.1]).

Let us introduce the space H
1
2
(k)(Γp) of traces of functions in H1

(k)(Ω) on Γp. The trace on Γu is defined in a nearly standard
way see [11, Sec. 2]. We use the whole scale of Sobolev spaces Hs

1(Γu), s ≥ 0, as defined in [2, Chap. II] from

L21(Γu) =

{
g : Γu → Rmeasurable;

∫
Γu

g2(τ ) r(τ ) dτ < +∞

}
,

where r(τ ) denotes the distance of the point with tangential coordinate τ to the axis r = 0. The trace operator: v ↦−→ v|Γu

is continuous and surjective from Hs+1
1 (Ω) onto H

s+ 1
2

1 (Γu), s ≥ 0, and in particular from H1
1 (Ω) onto H

1
2
1 (Γu) and also from

V 1
1 (Ω) onto the same space H

1
2
1 (Γu), see [2, Chap.II].

We introduce the spaces Hm,s(Ω̆), (see [2, Sec. II.4.b])

Hm,s(Ω̆) =
{
v̆ ∈ Hm(Ω̆); ∂ℓ

θ v̆ ∈ Hm(Ω̆), 1 ≤ ℓ ≤ s
}

and evident extension of spaces defined on each part of ∂Ω̆ , where m ∈ R and s ≥ 0. Note that Hm,0(Ω̆) coincides with
Hm(Ω̆).

From [2, Thm. II.3.1], we obtain the following characterization of Hm,s(Ω̆) by Fourier coefficients.

Lemma 2.1. For any nonnegative real number s and any integer m, the norm

(∑
k∈Z

(1 + |k|2)s
vk

2
Hm
(k)(Ω)

) 1
2

is equivalent, on

Hm,s(Ω̆), to the norm induced by the definition of this space.

Where H0
(k)(Ω) = L21(Ω), |k| ≥ 0 and H1

(k)(Ω) = V 1
1 (Ω), |k| ≥ 1.

Remark 2.2. When m is a negative integer, we denote by Hm
(k)⋄(Ω) the dual space of H−m

(k) (Ω) ∩ H−m
1⋄ (Ω) and provided with

the dual norm.

For convenience, throughout this paper, we will use the notation x ≲ y to denote that x ≤ cy, where c is a positive
constant.

2.3. Weak formulation

Weassume that the datumuk
0 belongs to L

2
1(Ω)3 and that the data (f k, pkb, g

k) belong to L2
(
0, T ; L21(Ω)3

)
×L2

(
0, T ;H

1
2
(k)(Γp)

)
× L2

(
0, T ; L21(Γu)

)
. Then, the Fourier coefficients

(
(uk, pk)

)
k∈Z of a solution of problem (2.2) are a solution of:
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Find (uk, pk) in H1
(
0, T ; L21(Ω)3

)
× L2

(
0, T ;H1

(k)(Ω)
)
such that

uk(·, 0) = uk
0 in Ω, (2.3)

for a.e. t, 0 ≤ t ≤ T ,

pk(·, t) = pkb on Γp, (2.4)

∀v ∈ L21(Ω)3, a1(∂tuk, v) + α a1(uk, v) + bk1(v, pk) = (f k, v)1,

∀q ∈ H1
(k)⋄(Ω), bk1(u

k, q) =

∫
Γu

gk(τ ) q(τ ) r(τ ) dτ ,
(2.5)

where the sesquilinear forms a1(·, ·) and bk1(·, ·) are defined by:

a1(u, v) = (u, v)1 =

∫
Ω

u(r, z) · v(r, z) r dr dz, and

bk1(v, p) = (v, gradkp)1 =

∫
Ω

v(r, z) · gradkp(r, z) r dr dz.

Then, the system consisting of all problems (2.3)–(2.5) has a solution (uk, pk)k∈Z in the product spaceΠk∈ZH1
(
0, T ; L21(Ω)3

)
×

L2
(
0, T ;H1

(k)(Ω)
)
.

These forms are obviously continuous on L21(Ω)3 × L21(Ω)3 and L21(Ω)3 ×H1
(k)(Ω). Note that bk1(v, p) = b−k

1 (v, p) holds and
that the kernel

Vk(Ω) =
{
v ∈ L21(Ω)3; ∀p ∈ H1

(k)⋄(Ω), bk1(v, p) = 0
}

is characterized by

Vk(Ω) =
{
v ∈ L21(Ω)3; divkv = 0 and v · n = 0 on Γu

}
. (2.6)

As standard for saddle-point problems ([12, Chap. I, Thm. 4.1]), the well-posedness of problem (2.3)–(2.5) relies on the
ellipticity of a1(·, ·) and on an inf–sup condition of Babuška and Brezzi type on the form bk1(·, ·):

q ∈ H1
(k)⋄(Ω), sup

v∈L21(Ω)3

bk1(v, q)
∥v∥L21(Ω)3

≥ β |q|H1
(k)(Ω) , (2.7)

∀u ∈ L21(Ω)3, a1(u, u) ≥ α1
∥u∥

2
L21(Ω)3

. (2.8)

We refer to [3, Lem. 3] and [4, Thm. 2.4], for the detailed proof of the next Theorem.

Theorem 2.3. For any data (f k, pkb, g
k) ∈ L2(0, T ; L21(Ω)3) × L2(0, T ;H

1
2
(k)(Γp)) × L2(0, T ; L21(Γu)) and uk

0 ∈ L21(Ω)3, the unique
solution

(
uk, pk

)
∈ H1(0, T ; L21(Ω)3) × L2(0, T ;H1

(k)(Ω)) of problem (2.3)–(2.5) satisfies the a priori estimateuk

H1(0,T ;L21(Ω)3) +

pkL2(0,T ;H1
(k)(Ω)) ≲

uk
0


L21(Ω)3 +

f kL2(0,T ;L21(Ω)3)

+
pkb

L2(0,t;H
1
2
(k)(Γp))

+
gk


H1(0,t;L21(Γu))

. (2.9)

Definition 2.4. With each
(
f k, pkb, g

k
)
in L2(0, T ; L21(Ω)3)×L2(0, T ;H

1
2
(k)(Γp))×L2(0, T ; L21(Γu)) and uk

0 ∈ L21(Ω)3, we associate
the unique solution (uk, pk) of problem (2.3)–(2.5), and we define the three-dimensional functions ŭ and p̆ by

ŭ(r, θ, z) =
1

√
2π

∑
k∈Z

uk(r, z)eikθ , p̆(r, θ, z) =
1

√
2π

∑
k∈Z

pk(r, z)eikθ .

It is now readily checked that the corresponding pair (ŭ, p̆) is the only solution of problem (1.1), so that the Darcy problem
is fully equivalent to the problem (2.3)–(2.5), k ∈ Z.

In the case of axisymmetric data f̆ , p̆b and ğ , i.e. fr , fθ , fz , pb and g are independent of θ , all Fourier coefficients of
(
ŭ, p̆

)
vanish but those of order zero. We refer to [3] for a slightly different formulation of the problem in this case.

In the case of general data f̆ , p̆b and ğ , the idea is to solve only a finite number of two-dimensional discrete problems. So,
we fix nonnegative integer K, and we introduce the pair (ŭK, p̆K) which is obtained from (ŭ, p̆) by Fourier truncation:

ŭK(r, θ, z) =
1

√
2π

∑
|k|≤K

uk(r, z)eikθ , p̆K(r, θ, z) =
1

√
2π

∑
|k|≤K

pk(r, z)eikθ . (2.10)

The following three-dimensional error between (ŭ, p̆) and its truncated Fourier series (ŭK, p̆K) is evaluated in appropriate
norms see [5, Thm. 3.1]:
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Theorem 2.5. Let s be a nonnegative real number and assume that the data

(f̆ , p̆b, ŭ0, ğ) ∈ L2(0, T ;H0,s(Ω̆)3) × L2(0, t;H
1
2 ,s(Γ̆P )) × H0,s(Ω̆)3

× H1(0, t;H−1,s(Ω̆) ∩ H−1
1⋄ (Ω̆)).

Then, the following bound holds between the solution (ŭ, p̆) to problem (1.1) and its truncated Fourier series (ŭK, p̆K) :ŭ − ŭK

H1(0,T ;L2(Ω̆)3) +

p̆ − p̆K

L2(0,T ;H1(Ω̆))

≤ K−s
(ŭ0


H0,s(Ω̆)3

+

f̆ 
L2(0,T ;H0,s(Ω̆)3)

+
p̆b

L2(0,t;H
1
2 ,s(Γ̆p))

+
ğH1(0,t;H−1,s(Ω̆)∩H−1

1⋄ (Ω̆))

)
.

3. The discrete problem

We split the discretization into two steps: first a semi-discretization in time, and next the full discretization. At each step,
we write the variational formulation and we recall the error arising from Fourier truncation.

3.1. The time semi-discrete problem

We introduce a partition of the interval [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ N , such that 0 = t0 < t1 < · · · < tN =

T . We denote by τn the time step tn − tn−1, by τ the N-tuple (τ1, τ2, . . . , τN ) and by |τ | the maximum of the τn, 1 ≤ n ≤ N .
The time discretization of problem (2.3)–(2.5) relies on the use of a backward Euler scheme. Thus for all k ∈ Z, for any

data (f k, pkb) ∈ C0(0, T ; L21(Ω)3) × C0(0, T ;H
1
2
(k)(Γp)), gk

∈ C0(0, T ; L21(Γu)) and uk
0 ∈ L21(Ω)3, satisfying divkuk

0 = 0 in Ω , we
consider the following scheme:

Find (ukn)0≤n≤N ∈ (L21(Ω)3)N+1 and (pkn)1≤n≤N ∈ (H1
(k)(Ω))N such that

uk0
= uk

0 in Ω, (3.1)

for all n, 1 ≤ n ≤ N ,

pkn = pknb on Γp, (3.2)

∀v ∈ L21(Ω)3 and ∀q ∈ H1
(k)⋄(Ω),

(ukn, v)1 + α τn(ukn, v)1 = (uk,n−1, v)1 − τn(v, gradkp
kn)1 + τn(f kn, v)1, (3.3)

bk1(u
kn, q) =

⟨
gkn, q

⟩
Γu

,

where f kn = f k(·, tn), gkn
= gk(·, tn) and pknb = pkb(·, tn). We refer to [5, Sec. 3.1] for thewell-posedness of problem (3.1)–(3.3)

and its a priori analysis.

Definition 3.1. With each (f kn, pknb , gkn, uk
0), we associate the unique solution (ukn, pkn) of problem (3.1)–(3.3), andwe define

the three-dimensional functions ŭn and p̆n by

ŭn(r, θ, z) =
1

√
2π

∑
k∈Z

ukn(r, z)eikθ , p̆n(r, θ, z) =
1

√
2π

∑
k∈Z

pkn(r, z)eikθ .

We fix the nonnegative integerK and we introduce the pair (ŭn
K, p̆nK) which is obtained from (ŭn

, p̆n) by Fourier truncation:

ŭn
K(r, θ, z) =

1
√
2π

∑
|k|≤K

ukn(r, z)eikθ , p̆nK(r, θ, z) =
1

√
2π

∑
|k|≤K

pkn(r, z)eikθ . (3.4)

Then, the following three-dimensional error between (ŭn
, p̆n) and its truncated Fourier series (ŭn

K, p̆nK) is obtained in [5,
Prop. 3.1]:

Proposition 3.2. Let s be a nonnegative real number and assume that the data

(f̆ , p̆b, ŭ0, ğ) belong to C0(0, T ;H0,s(Ω̆)3) × C0(0, t;H
1
2 ,s(Γ̆P )) × H0,s(Ω̆)3

× C0(0, t;H−1,s(Ω̆) ∩ H−1
1⋄ (Ω̆)).
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Then the following estimates holdŭn
− ŭn

K


L2(Ω̆)3 ≲ K−s

(ŭ0

H0,s(Ω̆)3 +

ğ(·, 0)H−1,s(Ω̆)∩H−1
1⋄ (Ω̆)

+
ğn


H−1,s(Ω̆)∩H−1

1⋄ (Ω̆) +
( n∑
m=1

τm(
f̆ m2

H0,s(Ω̆)3
+
p̆mb 2H 1

2 ,s(Γ̆P )
)
) 1

2
)
,

( n∑
m=1

τm
p̆m − p̆mK

2
H1(Ω̆)

) 1
2
≲ K−s

(ŭ0

H0,s(Ω̆)3 +

ğ(·, 0)H−1,s(Ω̆)∩H−1
1⋄ (Ω̆)

+
( n∑
m=1

τm(
f̆ m2

H0,s(Ω̆)3
+
p̆mb 2H 1

2 ,s(Γ̆P )
+
ğm

2
H−1,s(Ω̆)∩H−1

1⋄ (Ω̆))
1
2
)

+
( n∑
m=1

τm

 ğm
− ğm−1

τm

2
H−1,s(Ω̆)∩H−1

1⋄ (Ω̆)

) 1
2
)

and ⎛⎝ n∑
m=1

τm

 (ŭm
− ŭm

K) − (ŭm−1
− ŭm−1

K )
τm


2

L2(Ω̆)3

⎞⎠ 1
2

≲ K−s

(ŭ0

H0,s(Ω̆)3 +

ğ(·, 0)H−1,s(Ω̆)∩H−1
1⋄ (Ω̆)

+
( n∑
m=1

τm(
f̆ m2

H0,s(Ω̆)3
+
p̆mb 2H 1

2 ,s(Γ̆P )
)
) 1

2

+
( n∑
m=1

τm

 ğm
− ğm−1

τm

2
H−1,s(Ω̆)∩H−1

1⋄ (Ω̆)

) 1
2

)
.

3.2. The time and space discrete problem

We now describe the space discretization of problem (3.1)–(3.3). For each n, 0 ≤ n ≤ N , let (Tnh)h be a regular family of
triangulations of Ω by closed triangles, in the usual sense, such that:

• for each h, Ω is the union of all elements of Tnh,
• both Γ p and Γ u are the union of whole edges of elements of Tnh,
• there exists a constant σ > 0 independent of h, n and T such that, for all T in Tnh,

hT
ρT

≤ σ , where hT is the diameter of
T , and ρT the diameter of its inscribed circle,

• hn is the maximum of the diameters of the elements of Tnh,
• Enh is the set of all edges e of elements T of Tnh,
• E0

nh is the subset of Enh whose elements are not contained in ∂Ω ,
• Vnh is the set of vertices of the elements of Tnh,
• V0

nh is the subset of Vnh whose elements are inside Ω ,
• Vb

nh = Vnh \ V0
nh is the subset of Vnh made of boundary vertices.

For each triangle T and nonnegative integer ℓ, we denote by Pℓ(T ) the space of restrictions to T of polynomials with degree
≤ ℓ. At each time step, the discrete space of velocities is: Xnh(Ω) =

{
vh ∈ L21(Ω)3; ∀ T ∈ Tnh, vh|T∈ P0(T )3

}
, its interpolation

operator is the orthogonal projection operator Πnh from L21(Ω)3 onto Xnh(Ω) associated with the scalar product of L21(Ω)3
and verifies, for every 0 ≤ s ≤ 1

∀v ∈ Hs
(k)(Ω)3, ∥v − Πnhv∥L21(Ω)3 ≲ hs

n ∥v∥Hs
(k)(Ω)3 . (3.5)

We assume that the pressure is continuous whence the choice of discrete space as proposed in [13]: Mnh(k)(Ω) ={
qh ∈ H1

(k)(Ω); ∀ T ∈ Tnh, qh|T∈ P1(T )
}
, its degrees of freedom are defined at the nodes of Vnh and its interpolation operator

inh from H1
(k)(Ω) ontoMnh(k)(Ω) is the standard Lagrange interpolation operator at the nodes of Vnh with values inMnh(k)(Ω),

which satisfies, for every 1
2 < s ≤ 1

∀q ∈ Hs+1
(k) (Ω), |q − inhq|H1

(k)(Ω) ≲ hs
n ∥q∥Hs+1

(k) (Ω) . (3.6)

Finally, to approximate functions with zero trace on Γp, we set

M0
nh(k)(Ω) =

{
qh ∈ Mnh(k)(Ω); qh = 0 onΓp

}
.
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3.2.1. Variational formulation of the fully discrete problem

For every data (f k, pkb)k∈Z ∈ C0(0, T ; L21(Ω)3) × C0(0, T ;H
s+ 1

2
(k) (Γp)), s > 1

2 , g
k

∈ C0(0, T ; L21(Γu)) and uk
0 ∈ L21(Ω)3 with

divergence free divkuk
0 = 0 in Ω , the discrete problem constructed by the Galerkin method from (3.1)–(3.3) reads:

Find (ukn
h )0≤n≤N ∈ (Xnh(Ω))N+1, and (pknh )1≤n≤N ∈ (Mnh(k)(Ω))N , such that

uk0
h = Π0huk0 in Ω, (3.7)

for all n, 1 ≤ n ≤ N ,

pknh = inhpknb on Γp, (3.8)

∀vh ∈ Xnh(Ω), (ukn
h , vh)1 + α τn(ukn

h , vh)1 + τnbk1(vh, p
kn
h )

= (uk,n−1
h , vh)1 + τn(f kn, vh)1, (3.9)

∀qh ∈ M0
nh(k)(Ω), bk1(u

kn
h , qh) =

⟨
gkn, qh

⟩
Γu

.

We recall that this problemhas a unique solution see [5, Thm. 3.5]. Moreover, bk1(·, ·) satisfies the following inf–sup condition
see [5, Lem. 3.4], for all k ∈ Z,

∀qh ∈ M0
nh(k)(Ω), sup

vh∈Xnh(Ω)

bk1(vh, qh)
∥vh∥L21(Ω)3

≥ |qh|H1
(k)(Ω) . (3.10)

The analysis of the problem (3.7)–(3.9) and a priori error estimates were best dealt in [5]. Our goal in this article is to propose
and analyze a posteriori error estimates for problem (3.7)–(3.9).

Definition 3.3. Once the discrete coefficients (ukn
h , pknh ), |k| ≤ K, are known, we define the three-dimensional discrete

solution

ŭn
K,h(r, θ, z) =

1
√
2π

∑
|k|≤K

ukn
h (r, z)eikθ ,

p̆nK,h(r, θ, z) =
1

√
2π

∑
|k|≤K

pknh (r, z)eikθ . (3.11)

The following three-dimensional error between the solution (ŭn
, p̆n) and (ŭn

K,h, p̆
n
K,h) is bounded [5, Thm 3.3 and 3.4]:

Theorem 3.4. For any 1
2 < s ≤ 1, assume that the data (f̆ , p̆b, ŭ0, ğ) belong to C0(0, T ;H0,s(Ω̆)3) × C0(0, t;H

1
2 ,s(Γ̆p)) ×

H0,s(Ω̆)3 × C0(0, t;H−1,s(Ω̆)∩H−1
1⋄ (Ω̆)), uk

0 ∈ Hs
(k)(Ω)3 and the solution (ukn, pkn) ∈ Hs

(k)(Ω)3 ×Hs+1
(k) (Ω). Then, the following

error estimate holds between the solution (ŭn
, p̆n) and (ŭn

K,h, p̆
n
K,h): for 1 ≤ n ≤ N,ŭn

− ŭn
K,h


L2(Ω̆)3 ≤

( n∑
m=1

τm(hm)2s
p̆m2Hs+1,s(Ω̆)

) 1
2 +

n∑
m=0

(hm)s
ŭm

Hs,s(Ω̆)3

+ K−s
(ŭ0


H0,s(Ω̆)3 +

ğ(·, 0)H−1,s(Ω̆)∩H−1
1⋄ (Ω̆) +

ğn

H−1,s(Ω̆)∩H−1

1⋄ (Ω̆)

+
( n∑
m=1

τm(
f̆ m2

H0,s(Ω̆)3
+
p̆mb 2H 1

2 ,s(Γ̆p)
)
) 1

2
)
.

Theorem 3.5. Assume that all elements of Tn−1,h are contained in elements of Tnh. If the assumptions of Theorem 3.4 are satisfied,
the following a priori error estimate holds for n, 1 ≤ n ≤ N:

(τn)
1
2
p̆n − p̆nK,h


H1(Ω̆) ≤ |τ |

1
2

(( n∑
m=1

τm(hm)2s
p̆m2Hs+1,s(Ω̆)

) 1
2 + hn

p̆nHs+1,s(Ω̆)

+

n∑
m=0

(hm)s
ŭm

Hs,s(Ω̆)3

)
+ K−s

(ŭ0

H0,s(Ω̆)3 +

ğ(·, 0)H−1,s(Ω̆)∩H−1
1⋄ (Ω̆)

+

( n∑
m=1

τm(
f̆ m2

H0,s(Ω̆)3
+
p̆mb 2H 1

2 ,s(Γ̆p)
+
ğn


H−1,s(Ω̆)∩H−1

1⋄ (Ω̆))
) 1

2
)

+

( n∑
m=1

τm

 ğm
− ğm−1

τm

2
H−1,s(Ω̆)∩H−1

1⋄ (Ω̆)
)
) 1

2
.
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4. A posteriori analysis

For the time and the space discretizations, we describe a family of error indicators and prove its upper and lower bounds
for the error.

4.1. The time discretization

We first define the error indicators and write the residual equations. Next, for each value of k, we prove an a posteriori
estimate of the error and an upper bound for each indicator. In a final step, we return to the three-dimensional solution. For
each integer k, 1 ≤ n ≤ N , we define the time error indicator, see [9] and [14]

ηk
n =

(τn

3

) 1
2
∥ukn

h − uk,n−1
h ∥L21(Ω)3 . (4.1)

Let uk
τ denote the function which is continuous, affine on each interval [tn−1, tn], 1 ≤ n ≤ N , such that ∀n, 0 ≤ n ≤

N, uk
τ (tn) = ukn, and pkτ denote the piecewise constant function such that∀n, 1 ≤ n ≤ N, ∀t ∈]tn−1, tn], pkτ (t) = pk(tn).

We denote by Πτ the operator which associates with any continuous function v ∈ [0, T ] the piecewise constant function

Πτv is equal to v(tn) on each interval ]tn−1, tn], 1 ≤ n ≤ N . Let L denote a lifting operator, i.e., an operator from H
1
2
(k)(Γp)

into H1
(k)(Ω) which is continuous from H

s+ 1
2

(k) (Γp) into Hs+1
(k) (Ω) for all s ≥ 0 (indeed, the trace operator is surjective). Since

pkb ∈ L2(0, T ;H
1
2
(k)(Γp)), we denote by p̃kb the function defined for a.e. t, 0 ≤ t ≤ T , by p̃kb(t) = L (pkb(t)) ∈ L2(0, T ;H1

(k)(Ω))
and satisfyp̃kbL2(0,T ;H1

(k)(Ω)) ≤ c0
pkb

L2(0,T ;H
1
2
(k)(Γp))

. (4.2)

Setting pk
∗

= pk − p̃kb, we observe that pk
∗

∈ L2(0, T ;H1
(k)⋄(Ω)). Then for all t in ]tn−1, tn], the residual equation in variational

form reads
∀v ∈ L21(Ω)3, (∂t (uk

− uk
τ ), v)1 + α(uk

− uk
τ , v)1 + bk1(v, pk

∗
− Πτpk∗)

= (f k − Πτ f k, v)1 − α(uk
τ − ukn, v)1 − bk1(v, p̃kb − Πτ p̃kb), (4.3)

∀q ∈ H1
(k)⋄(Ω), bk1(u

k
− uk

τ , q) =
⟨
gk

− Πτ gk, q
⟩
Γu

. (4.4)

Because of the inf–sup condition (2.7), see [12, Chap. I, Lem. 4.1], we can find a unique uk
b ∈ Vk(Ω)⊥ such that ∀q ∈

H1
(k)⋄(Ω), b(uk

b, q) =
⟨
gk, q

⟩
Γu

, anduk
b(·, t)


L21(Ω)3 ≤ c

gk(·, t)

L21(Γu)

. (4.5)

Note that the nonnegative constants c0 and c only depend on Ω . When setting uk
⋄

= uk
− uk

b and ukn
⋄

= ukn
− ukn

b where
ukn
b = uk

b(·, tn), we observe that uk
⋄
and ukn

⋄
belong to H1(0, T ;Vk(Ω)). Moreover, the residual equations (4.3) and (4.4) are

equivalent to:
∀v ∈ Vk(Ω), (∂t (uk

⋄
− uk

⋄τ ), v)1 + α(uk
⋄
− uk

⋄τ , v)1

= (f k − Πτ f k, v)1 − α(uk
⋄τ − ukn

⋄
, v)1 − bk1(v, p̃kb − Πτ p̃kb). (4.6)

4.1.1. The reliability of the indicator
In this section, we will prove the upper bound of the error. To do so, we first start by introducing the following regularity

parameter

στ = max
1≤n≤N

τn

τn−1
, where τ0 = τ1.

Next, we show the error estimate in L2−norm at tn for all 1 ≤ n ≤ N:

Proposition 4.1. The following a posteriori error estimate holds

uk(·, tn) − ukn

L21(Ω)3 ≲

√
α

(
n∑

m=1

(ηk
m)

2

) 1
2

+

√
1
α

(f k − Πτ f k

L2(0,tn;L21(Ω)3) + c0

pkb − Πτpkb

L2(0,tn;H

1
2
(k)(Γp))

)

+
√

α(1 +
√

στ )

(
n∑

m=0

τm
ukm

− ukm
h

2
L21(Ω)3

) 1
2

. (4.7)
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Proof. Taking v = uk
⋄
− uk

⋄τ in (4.6) yields

1
2

d
dt

uk
⋄
− uk

⋄τ

2
L21(Ω)3 + α

uk
⋄
− uk

⋄τ

2
L21(Ω)3 ≤(f k − Πτ f k


L21(Ω)3 +

⏐⏐p̃kb − Πτ p̃kb
⏐⏐
H1
(k)(Ω) + α

uk
⋄τ − ukn

⋄


L21(Ω)3

) uk
⋄
− uk

⋄τ


L21(Ω)3 ,

whence
d
dt

uk
⋄
− uk

⋄τ

2
L21(Ω)3 + α

uk
⋄
− uk

⋄τ

2
L21(Ω)3 ≲ α

uk
⋄τ − ukn

⋄

2
L21(Ω)3

+
1
α

(f k − Πτ f k
2
L21(Ω)3 +

⏐⏐p̃kb − Πτ p̃kb
⏐⏐2
H1
(k)(Ω)

)
.

Integrating this inequality between 0 and tn, using the fact that (uk
⋄
− uk

⋄τ )(0) = 0 and ukn
⋄

= uk
⋄τ (tn) = Πτuk

⋄τ (t) obtainuk
⋄
(·, tn) − ukn

⋄

2
L21(Ω)3 ≲ α

uk
⋄τ − Πτuk

⋄τ

2
L2(0,tn;L21(Ω)3)

+
1
α

(f k − Πτ f k
2
L2(0,tn;L21(Ω)3) +

p̃kb − Πτ p̃kb
2
L2(0,tn;H1

(k)(Ω))

)
.

The triangle inequality, the fact that uk
⋄

= uk
− uk

b, Πτuk
bτ (t) = ukn

b = uk
bτ (t) and estimate (4.2) give usuk(·, tn) − ukn

2
L21(Ω)3 ≲ α

(uk
τ − Πτuk

τ )
2
L2(0,tn;L21(Ω)3)

+
1
α

(f k − Πτ f k
2
L2(0,tn;L21(Ω)3) + c0

pkb − Πτpkb
2
L2(0,tn;H

1
2
(k)(Γp))

)
. (4.8)

To estimate the first term on the right-hand side, we observe that on the interval ]tn−1, tn], (uk
τ − Πτuk

τ )(t) coincide with
−

tn−t
τn

(ukn
− uk,n−1). Thus by integrating this equality between tn−1 and tn and using the fact that τn = tn − tn−1, we obtainuk

τ − Πτuk
τ

2
L2(tn−1,tn;L21(Ω)3) =

ukn
− uk,n−1

2
L21(Ω)3

∫ tn

tn−1

(
tn − t

τn

)2

dt,

then uk
τ − Πτuk

τ


L2(tn−1,tn;L21(Ω)3) =

(τn

3

) 1
2 ukn

− uk,n−1

L21(Ω)3 . (4.9)

On the other hand, the triangle inequality impliesukn
− uk,n−1


L21(Ω)3 ≤

ukn
− ukn

h


L21(Ω)3 +

ukn
h − uk,n−1

h


L21(Ω)3

+

uk,n−1
h − uk,n−1


L21(Ω)3

.

Multiplying this inequality by
(

τn
3

) 1
2 and using the expression of the error indicator (4.1), we find(τn

3

) 1
2 ukn

− uk,n−1

L21(Ω)3 ≤

(τn

3

) 1
2 ukn

− ukn
h


L21(Ω)3 + ηk

n

+

(τn

3

) 1
2
uk,n−1

h − uk,n−1

L21(Ω)3

. (4.10)

Thus we obtainuk
τ − Πτuk

τ


L2(tn−1,tn;L21(Ω)3) ≤

(τn

3

) 1
2 ukn

− ukn
h


L21(Ω)3 + ηk

n

+

(τn−1

3

) 1
2
(στ )

1
2

uk,n−1
h − uk,n−1


L21(Ω)2

.

Summing over nwith 1 ≤ n ≤ N the square of this inequality, we obtainuk
τ − Πτuk

τ

2
L2(0,tn;L21(Ω)3)

≲ 2
n∑

m=1

(ηk
m)

2
+ (1 + στ )

n∑
m=0

τm
ukm

− ukm
h

2
L21(Ω)3 . (4.11)

Finally by substituting (4.11) in (4.8) we obtain the desired a posteriori error estimate. □
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Proposition 4.2. The following a posteriori error estimate holds∂t (uk
− uk

τ )

L2(0,tn;L21(Ω)3) ≲

f k − Πτ f k

L2(0,tn;L21(Ω)3) +

gk
− Πτ gk


H1(0,tn;L21(Γu))

+

(
n∑

m=1

(ηk
m)

2

) 1
2

+ c0
pkb − Πτpkb


L2(0,tn;H

1
2
(k)(Γp))

+ (1 +
√

στ )

(
n∑

m=0

τm
ukm

− ukm
h

2
L21(Ω)3

) 1
2

. (4.12)

Proof. We take v equal to ∂t (uk
⋄
− uk

⋄τ ) in (4.6) and apply the Cauchy–Schwarz inequality to obtain

1
2

∂t (uk
⋄
− uk

⋄τ )
2
L21(Ω)3 +

α

2
d
dt

uk
⋄
− uk

⋄τ

2
L21(Ω)3 ≤

f k − Πτ f k
2
L21(Ω)3

+ α2
uk

⋄τ − Πτuk
⋄τ

2
L21(Ω)3 +

p̃kb − Πτ p̃kb
2
H1
(k)(Ω) .

Integrating between 0 and tn, using estimate (4.2) and the fact that (uk
⋄
− uk

⋄τ )(0) = 0, yield∂t (uk
⋄
− uk

⋄τ )
2
L2(0,tn;L21(Ω)3) + α

(uk
⋄
− uk

⋄τ )(tn)
2
L21(Ω)3

≤ 2
(f k − Πτ f k

2
L2(0,tn;L21(Ω)3)

+ α2
uk

⋄τ − Πτuk
⋄τ

2
L2(0,tn;L21(Ω)3) + c20

pkb − Πτpkb
2
L2(0,tn;H

1
2
(k)(Γp))

)
.

The triangle inequality and the fact that uk
⋄

= uk
− uk

b give us∂t (uk
− uk

τ )
2
L2(0,tn;L21(Ω)3)

≤ 2
(f k − Πτ f k

2
L2(0,tn;L21(Ω)3) + α2

uk
τ − Πτuk

τ

2
L2(0,tn;L21(Ω)3)

+ c20
pkb − Πτpkb

2
L2(0,tn;H

1
2
(k)(Γp))

+
∂t (uk

b − uk
bτ )
2
L2(0,tn;L21(Ω)3)

)
.

Then, (4.12) follows by combining this estimate with (4.5) and (4.11). □

The last result in this section concerns the error estimate of the pressure.

Proposition 4.3. The following a posteriori error estimate holds, for 1 ≤ n ≤ Npk − pkτ

L2(0,tn;H1

(k)(Ω)) ≲
f k − Πτ f k


L2(0,tn;L21(Ω)3) +

gk
− Πτ gk


H1(0,tn;L21(Γu))

+

( n∑
m=1

(ηk
m)

2
) 1

2

+ c0
pkb − Πτpkb


L2(0,tn;H

1
2
(k)(Γp))

+ (1 +
√

στ )
( n∑

m=0

τm
ukm

− ukm
h

2
L21(Ω)3

) 1
2

. (4.13)

Proof. From Eq. (4.6) we have for all v ∈ L21(Ω)3,

b(v, pk
∗
− Πτpk∗) = (∂t (uk

τ − uk), v)1 + α(uk
τ − uk, v)1 + bk1(v, Πτ p̃kb − p̃kb)

+ (f k − Πτ f k, v)1 + α(ukn
− uk

τ , v)1.

The Cauchy–Schwarz inequality and the inf–sup condition (2.7) yieldpk
∗
− Πτpk∗


H1
(k)(Ω) ≲

∂t (uk
τ − uk)


L21(Ω)3 + α

uk
τ − uk


L21(Ω)3 +

p̃kb − Πτ p̃kb

H1
(k)(Ω)

+
f k − Πτ f k


L21(Ω)3 + α

ukn
− uk

τ


L21(Ω)3 .
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Integrating between 0 and tn, using estimate (4.2) and ukn
= Πτuk

τ we obtainpk
∗
− Πτpk∗

2
L2(0,tn;H1

(k)(Ω))

≲
∂t (uk

τ − uk)
2
L2(0,tn;L21(Ω)3) + c20

pkb − Πτpkb
2
L2(0,tn;H

1
2
(k)(Γp))

+
f k − Πτ f v

2
L2(0,tn;L21(Ω)3) + α2

Πτuk
τ − uk

τ

2
L2(0,tn;L21(Ω)3) .

Finally by inserting (4.11) and (4.12) in the last inequality, using the fact that pk − pkτ = (pk
∗
− Πτpk∗) + (p̃kb − Πτ p̃kb) and the

triangle inequality we obtain the desired a posteriori error estimate. □

The last term in (4.7), (4.12) and (4.13), will be afterward evaluated .

4.1.2. The efficiency of the indicator
Concerning the time error indicator ηk

n, n = 1, . . . ,N defined in (4.1), each of them satisfies the following bound:

Proposition 4.4.

ηk
n ≲

uk
− uk

τ


H1(tn−1,tn;L21(Ω)3) +

pk − pkτ

L2(tn−1,tn;H1

(k)(Ω))

+
f k − Πτ f k


L2(tn−1,tn;L21(Ω)3) + (1 +

√
στ )
( n∑
m=n−1

τm
ukm

− ukm
h

2
L21(Ω)3

) 1
2 . (4.14)

Moreover this estimate is local with respect to the time variable.

Proof. We easily derive

ηk
n ≤

(τn

3

) 1
2 ukn

h − ukn

L21(Ω)3 +

(τn

3

) 1
2 ukn

− uk,n−1

L21(Ω)3

+

(τn−1

3

) 1
2
(στ )

1
2

uk,n−1
− uk,n−1

h


L21(Ω)3

,

then,

ηk
n ≲ (

τn

3
)
1
2
ukn

− uk,n−1

L21(Ω)3

+ (1 +
√

στ )
( n∑

m=n−1

τm
ukm

− ukm
h

2
L21(Ω)3

) 1
2

. (4.15)

In order to evaluate the first term on the right-hand side, we take v = uk
τ −ukn in (4.6) and we use the fact that pk

∗
+ p̃kb = pk,

Πτpk = pkτ and ukn
= Πτuk

τ , we obtainuk
τ − Πτuk

τ

2
L21(Ω)3 ≲

∂t (uk
τ − uk)

2
L21(Ω)3 +

uk
τ − uk

2
L21(Ω)3

+
pkτ − pk

2
H1
(k)(Ω) +

f k − Πτ f k
2
L21(Ω)3 .

Integrating this inequality between tn−1 and tn and using (4.9) yield
τn

3

ukn
− uk,n−1

2
L21(Ω)3 ≲

uk
τ − uk

2
H1(tn−1,tn;L21(Ω)3)

+
pkτ − pk

2
L2(tn−1,tn;H1

(k)(Ω)) +
f k − Πτ f k

2
L2(tn−1,tn;L21(Ω)3) .

Finally by substituting the previous inequality in (4.15) we obtain the desired estimate. □

4.1.3. The three-dimensional error
We define the three-dimensional functions

(
ŭτ , p̆τ

)
and (ŭτK, p̆τK) by

ŭτ (r, θ, z) =
1

√
2π

∑
k∈Z

uk
τ (r, z)e

ikθ , p̆τ (r, θ, z) =
1

√
2π

∑
k∈Z

pkτ (r, z)e
ikθ ,

ŭτK(r, θ, z) =
1

√
2π

∑
|k|≤K

uk
τ (r, z)e

ikθ , p̆τK(r, θ, z) =
1

√
2π

∑
|k|≤K

pkτ (r, z)e
ikθ . (4.16)
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Theorem 4.5. The following estimates hold for any nonnegative real number s(ŭ(·, tn) − ŭK(·, tn)) − (ŭn
− ŭn

K)

L2(Ω̆)3 ≤ K−s

(
2α
(∑
k∈Z

(1 + |k|2)s
n∑

m=1

(ηk
m)

2)
+

1
α

(f̆ − Πτ f̆
2
L2(0,tn;H0,s(Ω̆)3)

+ c20
p̆b − Πτ p̆b

2
L2(0,tn;H

1
2 ,s(Γ̆p))

)
+ α(1 + στ )

n∑
m=0

τm
ŭm

− ŭm
h

2
H0,s(Ω̆)3

) 1
2

and ∂t (ŭ − ŭK) − ∂t (ŭτ − ŭτK)

L2(0,tn;L2(Ω̆)3) +

(p̆ − p̆K) − (p̆τ − p̆τK)

L2(0,tn;H1(Ω̆))

≤ K−s
(f̆ − Πτ f̆

2
L2(0,tn;H0,s(Ω̆)3)

+
p̆b − Πτ p̆b

2
L2(0,tn;;H

1
2 ,s(Γ̆p))

+
(∑
k∈Z

(1 + |k|2)s
n∑

m=1

(ηk
m)

2)
+ (1 + στ )

n∑
m=0

τm
ŭm

− ŭm
h

2
H0,s(Ω̆)3

) 1
2
. (4.17)

Proof. The definitions of ŭn
K, ŭτK and p̆τK in (3.4) and (4.16) yield(ŭ(·, tn) − ŭK(·, tn)) − (ŭn

− ŭn
K)
2
L2(Ω̆)3 ≤

∑
|k|>K

uk(·, tn) − ukn
2
H0
(k)(Ω)3

and ∂t (ŭ − ŭK) − ∂t (ŭτ − ŭτK)
2
L2(Ω̆)3 +

(p̆ − p̆K) − (p̆τ − p̆τK)
2
H1(Ω̆)

≤

∑
|k|>K

∂t (uk
− uk

τ )
2
H0
(k)(Ω)3 +

pk − pkτ
2
H1
(k)(Ω) .

Since (1 + |k|2)−s < K−2s, we obtain(ŭ(·, tn) − ŭK(·, tn)) − (ŭn
− ŭn

K)
2
L2(Ω̆)3

≤ K−2s
∑
k∈Z

(1 + |k|2)s
uk(·, tn) − ukn

2
H0
(k)(Ω)3

and ∂t (ŭ − ŭK) − ∂t (ŭτ − ŭτK)
2
L2(Ω̆)3 +

(p̆ − p̆K) − (p̆τ − p̆τK)
2
H1(Ω̆)

≤ K−2s
∑
k∈Z

(1 + |k|2)s
(∂t (uk

− uk
τ )
2
H0
(k)(Ω)3 +

pk − pkτ
2
H1
(k)(Ω)

)
.

Then (4.17) follows from integrating the last estimate between 0 and tn, estimates (4.12) and (4.13) and Lemma 2.1. □

4.2. The space discretization

To deal with the fully a posteriori error estimates, we introduce a regular family (Tknh)h of triangulations of Ω which
satisfy the assumptions stated in Section 3.2.

For each T ∈ Tknh, we associate

• the set ET of edges of T ,
• E0

T = ET ∩ E0
nh,

• the diameter he of edge e of element T of Tknh,
• EΓu

nh = {e ∈ Enh; e ⊂ Γu}, where E0
nh and Enh are defined in Section 3.2.

We are now in a position to introduce the family of error indicators: For each integer k, −K ≤ k ≤ K, each n, 1 ≤ n ≤ N
and each triangle T in Tknh, we define the following error indicators

ηkn
T =

1
τn

uk,n−1
h − Πnhuk,n−1

h


L21(T )

3
and ηkn

∂T =

∑
e∈EΓu

nh

h
1
2
e
[ukn

h · ne]e

L21(e)

. (4.18)
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Since ukn
h ∈ Xnh(Ω), the jumps [ukn

h · ne]e are constant on each e. Moreover, in the context of mesh adaptivity, the term
uk,n−1
h −Πnhuk,n−1

h only differs from zero in the elements T of Tknh that are the union of several elements of Tk,n−1,h. Therefore
these indicators can be readily and explicitly computed.

We approximate the boundary data pknb by the Lagrange interpolation operator inh, with values in M0
nh(k)(Ω), i.e. for each

continuous function q ∈ Γp, inhq is a piecewise affine function equal to q on each node of Vb
nh.

In order to prove the a posteriori estimates, we first write the residual equations.We recall that pkn
∗

= pkn− p̃knb and pkn
∗h =

pknh − L(inhpknb ), where p̃knb = L(pknb ) and pkn
∗h is no longer a piecewise polynomial function.

Lemma 4.6. For any solutions (ukn, pkn)1≤n≤N to problem (3.1)–(3.3) and (ukn
h , pknh )1≤n≤N to problem (3.7)–(3.9), the error

(ukn
− ukn

h , pkn − pknh )1≤n≤N satisfies the following residual equations: for all (v, q) ∈ L21(Ω)3 × H1
(k)⋄(Ω)

(ukn
− ukn

h , v)1 + ατn(ukn
− ukn

h , v)1 + τnbk1(v, pkn
∗

− pkn
∗h)

= (uk,n−1
− uk,n−1

h , v)1 + (uk,n−1
h − Πnhuk,n−1

h , v)1

+ τn(f kn − Πnhf kn, v)1 − τnbk1(v,L(pknb − inhpknb )),

bk1(u
kn

− ukn
h , q) =

⟨
gkn, q − qnh

⟩
Γu

−
1
2

∑
T∈Tknh

∑
e∈EΓu

nh

∫
e
[ukn

h · ne]e(τ )(q − qnh)(τ )dτ . (4.19)

Proof. Taking vh = χT e in the first equation of (3.9), where χT is the characteristic function of T and e runs through the
canonical basis of R3, we obtain for all T ∈ Tknh,

(ukn
h , χTe)1 + ατn(ukn

h , χTe)1 + τnbk1(χTe, pknh ) = (uk,n−1
h , χTe)1 + τn(f kn, χTe)1.

Then

ukn
h + ατnukn

h + τngradkp
kn
h = uk,n−1

h +
τn

meas(T )

∫
T
f knrdrdz

= Πnhuk,n−1
h + τnΠnhf kn.

Multiplying this equation by any v ∈ L21(Ω)3, integrating on each T ∈ Tknh, and summing over all elements T ∈ Tknh, we
obtain ∑

T∈Tknh

∫
T
(ukn

h + ατnukn
h + τngradkp

kn
h ) · v rdrdz

=

∑
T∈Tknh

∫
T
(Πnhuk,n−1

h + τnΠnhf kn) · v rdrdz.

Finally, subtracting this equality from the first equation of (3.3), we obtain the first equation of (4.19). On the other hand,
the second equations of (3.3) and (3.9) give ∀qnh ∈ M0

nh(k)(Ω), bk1(u
kn

− ukn
h , qnh) = 0. Then by Green’s formula, we obtain

bk1(u
kn

− ukn
h , q) = bk1(u

kn
− ukn

h , q − qnh),

= bk1(u
kn, q − qnh) − bk1(u

kn
h , q − qnh)

= bk1(u
kn, q − qnh) − b−k

1 (ukn
h , q − qnh)

=
⟨
gkn, q − qnh

⟩
Γu

−

∑
T∈Tknh

∫
T
ukn
h · grad−k(q − qnh) rdrdz

=
⟨
gkn, q − qnh

⟩
Γu

−

∑
T∈Tknh

∫
∂T∩(Ω∪Γu)

(ukn
h · n)(τ )(q − qnh)(τ ) dτ ,

whence the second line in (4.19). □

4.3. The reliability of the indicators

For each value of k, we prove an a posteriori estimate of the error. In a final step, we return to the three-dimensional
solution.
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Proposition 4.7. The following a posteriori error estimate holds between the solutions (ukn, pkn)1≤n≤N to problem (3.1)–(3.3)
and (ukn

h , pknh )1≤n≤N to problem (3.7)–(3.9),ukn
− ukn

h

2
L21(Ω)3 ≤

uk
0 − Π0huk

0

2
L21(Ω)3 + c

(
(Gkn)2 +

∑
T∈Tknh

(ηkn
∂T )

2
)

+
2
α

n∑
m=1

τm

(
J2km +

∑
T∈Tknh

(ηkm
T )2

)
, (4.20)

where Jkn =
f kn − Πnhf kn


L21(Ω)3 and Gkn =

pknb − inhpknb

H

1
2
(k)(Γp)

.

Proof. To simplify, letwkn
= ukn

− ukn
h , rkn

∗
= pkn

∗
− pkn

∗h and

F kn
= f kn − Πnhf kn − gradkL(p

kn
b − inhpknb ) +

1
τn

(uk,n−1
h − Πnhuk,n−1).

Therefore the residual equations (4.19) become for all (v, q) ∈ L21(Ω)3 × H1
(k)⋄(Ω)

(wkn, v)1 + ατn(wkn, v)1 + τnbk1(v, rkn
∗
) = (wk,n−1, v)1 + τn(F kn, v)1,

bk1(w
kn, q) =

⟨
gkn, q − Rn

hq
⟩
Γu

−
1
2

∑
T∈Tnh

∑
e∈EΓu

nh

∫
e
[ukn

h · ne]e(τ )(q − Rn
hq)(τ )dτ , (4.21)

where Rn
h denotes a Clément type regularization operator with values in M0

nh(k) such as the Scott and Zhang operator [15].
This operator preserves the zero boundary trace and satisfies for each T ∈ Tknh, and e ∈ EΓu

nh , see [16, Cor. IX.3.9], [15] and
also [17] for the extension to weighted spaces,

∀q ∈ H1
(k)(Ω),

q − Rn
hq

L21(e)

≤ ch
1
2
e ∥q∥H1

(k)(∆e) ,

where ∆e is an appropriate neighborhood of e. Then from this inequality, there exists a unique µkn
∈ H1

(k)⋄(Ω) such that for
all q ∈ H1

(k)⋄(Ω)(
gradkµ

kn, gradkq
)
1

= bk1(w
kn, q)

⏐⏐µkn
⏐⏐
H1
(k)(Ω) ≤ c

⎛⎜⎝ ∑
T∈Tknh

∑
e∈EΓu

nh

he
[ukn

h · ne]e
2
L21(e)

⎞⎟⎠
1
2

.

(4.22)

Hence,wkn has the orthogonal decomposition:wkn
= wkn

∗
+ gradkµ

kn, withwkn
∗

belonging to Vk(Ω) (see (2.6)). Taking v =

wkn
∗

in the first equation of problem (4.21), using the fact that (wkn,wkn
∗
)1 =

wkn
∗

2
L21(Ω)3 , (w

k,n−1,wkn
∗
)1 = (wk,n−1

∗
,wkn

∗
)1,

and the Cauchy–Schwarz inequality we obtainwkn
∗

2
L21(Ω)3 − (wk,n−1

∗
,wkn

∗
)1 + ατn

wkn
∗

2
L21(Ω)3 = τn(F kn,wkn

∗
)1.

This is equivalent towkn
∗

2
L21(Ω)3

− (wk,n−1
∗

,wkn
∗
)1 + ατn

wkn
∗

2
L21(Ω)3

= τn(F kn,wkn
∗
)1.

Consequently,

1
2

(wkn
∗

2
L21(Ω)3

−
wk,n−1

∗

2
L21(Ω)3 +

wkn
∗

− wk,n−1
∗

2
L21(Ω)3

)
+ ατn

wkn
∗

2
L21(Ω)3

≤ τn
F kn


L21(Ω)3

wkn
∗


L21(Ω)3

.

Young’s inequality giveswkn
∗

2
L21(Ω)3

−
wk,n−1

∗

2
L21(Ω)3 +

wkn
∗

− wk,n−1
∗

2
L21(Ω)3

+ ατn

wkn
∗

2
L21(Ω)3

≤
τn

α

F kn
2
L21(Ω)3 .
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Then wkn
∗

2
L21(Ω)3 −

wk,n−1
∗

2
L21(Ω)3 ≤

τn

α

F kn
2
L21(Ω)3 .

Summing this inequality over n yieldswkn
∗

2
L21(Ω)3 −

wk0
∗

2
L21(Ω)3 ≤

1
α

n∑
m=1

τm
F km

2
L21(Ω)3 .

Using the fact that
wkn

2
L21(Ω)3 =

⏐⏐µkn
⏐⏐2
H1
(k)(Ω) +

wkn
∗

2
L21(Ω)3 , we obtain

wkn
2
L21(Ω)3 ≤

wk0
2
L21(Ω)3 +

⏐⏐µkn
⏐⏐2
H1
(k)(Ω) +

1
α

n∑
m=1

τm
F km

2
L21(Ω)3 .

Finally by inserting (4.22) into this inequality, using the fact thatF kn

L21(Ω)3 ≤

f kn − Πnhf kn

L21(Ω)3 +

pknb − inhpknb

H

1
2
(k)(Γp)

+ ηkn
T ,

andwkn
= ukn

− ukn
h , we obtain the a posteriori estimate (4.20). □

The next estimate is derived by similar arguments.

Proposition 4.8. The following a posteriori error estimate holds between the solutions (ukn, pkn)1≤n≤N to problem (3.1)–(3.3)
and (ukn

h , pknh )1≤n≤N to problem (3.7)–(3.9),

n∑
m=1

τm

 (ukm
− ukm

h ) − (uk,m−1
− uk,m−1

h )
τm

+ gradk(p
km

− pkmh )


2

L21(Ω)3

≲ α
uk

0 − Π0huk
0

2
L21(Ω)3 +

n∑
m=1

τm
(
(Jkm)2 + (Gkm)2 +

∑
T∈Tkmh

((ηkm
T )2 + (ηkm

∂T )
2)
)
.

4.3.1. Error of the three-dimensional solution
Using the same notation as above to introduce the truncated discrete solution

ŭn
K,h(r, θ, z) =

1
√
2π

∑
|k|≤K

ukn
h (r, z)eikθ and p̆nK,h(r, θ, z) =

1
√
2π

∑
|k|≤K

pknh (r, z)eikθ ,

Theorem 4.9. For n, 1 ≤ n ≤ N, we have the following a posteriori error estimate between (ŭn
K, p̆nK) defined in (3.4) and

(ŭn
K,h, p̆

n
K,h)ŭn

K − ŭn
K,h

2
L2(Ω̆)3 ≤

∑
|k|≤K

(uk
0 − Π0huk

0

2
L21(Ω)3 + c

(pknb − inhpknb
2
H

1
2
(k)(Γp)

+

∑
T∈Tknh

(ηkn
∂T )

2)
+

2
α

n∑
m=1

τm
(f km − Πnhf km

2
L21(Ω)3 +

∑
T∈Tkmh

(ηkm
T )2

))
,

and  (ŭm
K − ŭm

K,h) − (ŭm
K − ŭm

K,h)
τm

+ grad(p̆mK − p̆mK,h)
2
L2(Ω̆)3

≤

∑
|k|≤K

(
α
uk

0 − Π0huk
0

2
L21(Ω)3 +

n∑
m=1

τm
(
(Jkm)2 + (Gkm)2 +

∑
T∈Tkmh

((ηkm
T )2 + (ηkm

∂T )
2)
))

.

Proof. From Propositions 4.7 and 4.8 and the fact thatŭn
K − ŭn

K,h

2
L2(Ω̆)3 ≤

∑
|k|≤K

ukn
− ukn

h

2
H0
(k)(Ω)3 ,
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and that (ŭm
K − ŭm

K,h) − (ŭm
K − ŭm

K,h)
τm

+ grad(p̆mK − p̆mK,h)
2
L2(Ω̆)3

≤

∑
|k|≤K

 (ukm
− ukm

h ) − (uk,m−1
− uk,m−1

h )
τm

+ gradk(p
km

− pkmh )


2

H0
(k)(Ω)3

we obtain the result. □

4.4. The efficiency of the indicators

We will prove an upper bound for the error indicators. For each T ∈ Tknh, let ωT denote the union of all triangles in Tknh
that share at least an edge with T .

Proposition 4.10. For each n, 1 ≤ n ≤ N and T ∈ Tknh,

ηkn
T ≤ α

ukn
− ukn

h


L21(T )

3

+

 (ukn
− ukn

h ) − (uk,n−1
− uk,n−1

h )
τn

+ gradk(p
kn

− pknh )


L21(T )

3

+
f kn − Πnhf kn


L21(T )

3 . (4.23)

Proof. Using the fact that pkn
∗

−pkn
∗h = pkn −pknh −L(pknb − inhpknb ), and taking v = (uk,n−1

h −Πnhuk,n−1
h )χT in the first equation

of (4.19), where χT is the characteristic function of T , we obtainuk,n−1
h − Πnhuk,n−1

h

2
L21(T )

3
= ατn

(
ukn

− ukn
h , un−1

h − Πnhuk,n−1
h

)
1,T

+ τn

(
(ukn

− ukn
h ) − (uk,n−1

− uk,n−1
h )

τn
+ gradk(p

kn
− pknh ), uk,n−1

h − Πnhuk,n−1
h

)
1,T

− τn

∫
T
(f kn − Πnhf kn) · (uk,n−1

h − Πnhuk,n−1
h )rdrdz.

The Cauchy–Schwarz inequality yieldsuk,n−1
h − Πnhuk,n−1

h


L21(T )

3
≤ ατn

ukn
− ukn

h


L21(T )

3 + τn
f kn − Πnhf kn


L21(T )

3

+ τn

 (ukn
− ukn

h ) − (uk,n−1
− uk,n−1

h )
τn

+ gradk(p
kn

− pknh )


L21(T )

3

.

Finally by multiplying this inequality by
1
τn

and from the expression of the a posteriori indicator ηkn
T , we obtain the desired

estimate. □

Proposition 4.11. For each n, 1 ≤ n ≤ N and T ∈ Tknh,

ηkn
∂T ≤ c

ukn
− ukn

h


L21(ωT )3

. (4.24)

Proof. By means of a fixed lifting operator on the reference element T̂ and by using the affine transformation that maps T̂
onto T , we construct for each e ∈ ET a lifting operator Le,T such that for each polynomial ϕ on e vanishing on ∂e, Le,Tϕ is a
polynomial on T vanishing on ∂T \ e and equal to ϕ on e.

Let be be the bubble function on e, i.e., the product of the barycentric coordinates associated with the vertices of e. For
each e ∈ E0

T , we denote by T ′ the other element of Tknh that contains e. In the second equation of (4.19), we take qnh = 0 and
q = qkne , with

qkne =

⎧⎨⎩ Le,T ([ukn
h · ne]ebe) on T ,

Le,T ′ ([ukn
h · ne]ebe) on T ′,

0 elsewhere.
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Then, we obtain

bk1
(
ukn

− ukn
h , qkne

)
=
⟨
gkn, qkne

⟩
Γu

−
1
2

∑
T∈Tknh

⎛⎜⎝∑
e∈EΓu

nh

∫
e
[ukn

h · ne]e(τ )qkne (τ )dτ

⎞⎟⎠ .

On the other hand,

qkne (τ ) = Le,T ([ukn
h · ne]ebe)χT + Le,T ′ ([ukn

h · ne]ebe)χT ′ = 2[ukn
h · ne]ebe.

Then [ukn
h · ne]eb

1
2
e

2
L21(e)

≤
ukn

h − ukn

L21(T∪T ′)3

⏐⏐qkne ⏐⏐H1
(k)(T∪T ′) . (4.25)

Recall the following inverse inequality, for each constant λ, see [10, Lem. 3.3],

∥λ∥L21(e)
≤ c

λb 1
2
e


L21(e)

and
⏐⏐Le,T (λbe)

⏐⏐
H1
(k)(T )

≤ ch
−

1
2

e ∥λ∥L21(e)
.

The expression of ηkn
∂T and the first inverse inequality, yield

ηkn
∂T ≤ c

(∑
e∈EΓu

nh

h
1
2
e

[ukn
h · ne]eb

1
2
e


L21(e)

)
.

Using estimate (4.25) we obtain

ηkn
∂T ≤ c

(∑
e∈EΓu

nh

h
1
2
e
ukn

h − ukn
 1

2
L21(T∪T ′)3

⏐⏐Le,T ([ukn
h · ne]ebe)

⏐⏐ 12
H1
(k)(T∪T ′)

)
.

By inserting the second inverse inequality into this last inequality we obtain the bound on the second indicator ηkn
∂T . □

To establish a global error, we assemble all the estimations obtained in sections above. To do so, we first define the
following time and spacial error

ετ = sup
1≤m≤n

uk(·, tm) − ukm

L21(Ω)3 +

∂t (uk
− uk

τ )

L2(0,tn;L21(Ω)3)

+
pk − pkτ


L2(0,tn;H1

(k)(Ω)) ,

εh = sup
1≤m≤n

ukm
− ukm

h


L21(Ω)3

+

n∑
m=1

τm

 (ukm
− ukm

h ) − (uk,m−1
− uk,m−1

h )
τm

+ gradk(p
km

− pkmh )


2

L21(Ω)3

.

Next, by combining all the a posteriori results, we observe that, up to the terms involving the data, the full error ετ + εh is
equivalent to the sum( n∑

m=1

(ηk
m)

2
+ τm

∑
T∈Tkmh

(ηkm
T + ηkm

∂T )
2
) 1

2
,

with equivalence constants independent of τ and hn. Moreover, estimate (4.14) is local in time and estimates (4.23) and
(4.24) are local with respect to both the time and space variables. Therefore these estimates are fully optimal. Hence, a
simple adaptivity strategy relying on these indicators can be applied for adapting both the time step and the mesh.

5. Adaptivity strategy

As standard, the adaptivity strategy that we use combines three steps, an initialization step, an adaptation step in time
and an adaptation step in space. We fix a positive tolerance η∗.

Step 1: Initialization We fix a triangulation T0h of Ω such that the quantities which appear in Propositions 4.7 and 4.8,
namely:uk

0 − Π0huk
0


L21(Ω)3 ,

f kn − Πnhf kn

L21(Ω)3 and

pknb − inhpknb

H

1
2
(k)(Γp)

are smaller than η∗. This condition is possible for smooth data thanks to the approximation properties of the finite element
spaces involved in the discretization.
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Step 2: Time adaptivity Assuming that the time step τn, the triangulation Tn−1,h and the discrete solution (uk,n−1
h , pk,n−1

h )
are known. We first initialize Tnh equal to Tn−1,h. Next, we compute the first solution (ukn

h , pknh ) to problem (3.7)–(3.9) and
the corresponding error indicators ηk

n defined in (4.1). Finally,

• if ηk
n is smaller than η∗, we proceed to the spatial adaptivity step;

• else, we divide τn by two (or by a constant times ηk
n/η

∗) and perform a new computation.

Of course, this step can be iterated a number of times. This leads to the final value of τn.
Step 3: Spatial adaptivity
Assuming that the time step τn and the triangulation Tnh are known. We compute the discrete solution (ukn

h , pknh ) to
problem (3.7)–(3.9) corresponding to this triangulation. We then calculate the error indicators ηkn

T and ηkn
∂T defined in (4.18)

and their mean values η̄kn
T and η̄kn

∂T , respectively.
Concerning the adaptivity, we perform it in three substeps:

(i) All e ∈ EΓu
nh (with obvious notation) such that ηkn

∂T are larger thanmax{η∗, η̄kn
∂T } are divided intoN equal segments, where

N is proportional to the ratio ηkn
∂T/max{η∗, η̄kn

∂T }. This gives rise to a new set e ∈ EΓu
n+1,h.

(ii) A new triangulation on Ω is constructed using these new edges.
(iii) The triangulation Tnh is refined and coarsened according to the following criterion: the diameter of a new element

contained in T or containing T is proportional to hT times the ratio η̄kn
T /ηkn

T . This gives rise to the new triangulation
Tn+1,h.

Of course, the adaptation step is iterated either a finite number of times or until the Hilbertian sum of all error indicators,
namely( n∑

m=1

(ηk
m)

2
+ τm

∑
T∈Tkmh

(ηkm
T + ηkm

∂T )
2
) 1

2
become smaller than tolerance η∗.

Note that, this strategy is very similar to that in [18,19].

6. Numerical experiment

To show the effectiveness of our numerical scheme, we present in this section the following simulation that we have
carried out using FreeFem++ [20]. The computational domain Ω̆ is generated by the L-shaped meridian domain Ω defined
by

Ω =]0, 1[×] − 2, 0[∩]0, 2[×]0, 2[.

We denote by Γ0 the intersection between Ω̆ and axis r = 0, and the boundary Γ = ∂Ω ∪ Γ0 is divided into two parts Γp
and Γu such that: Γp coincides with the intersection of Γ and the plan z = 0.

We solve Darcy equations with data α = 0.1, pressure pb = 0 on Γp, gu defined on Γu as:

gu(r, 1) =
(
1 − r2

)
sin(t), gu(0, z) =

(
1 − z2

)
sin(t),

gu(r, 2) =
(
4 − r2

)
t, gu(2, z) =

(
4 − z2

)
t

and the source term f is equal to (1, 0). The discrete solution corresponds to K = 3.
To build a reference solution (ue, pe) which will serve as the exact solution, we consider a uniform triangular fine mesh,

where the size mesh h is taken equal to href = 0.000985038 (the number of triangles = 225,452 and the number of vertices
= 113,495) and a uniform small time step τ = τref = 10−3 .

In the first test we use a uniform triangular grid with reference mesh size h = href and vary the time step from τ = 1/10
to τ = 1/320.

In the second test, all computations are performed using the reference time step τ = τref and the coarse mesh such that
its size h = 0.0891014 was halved successively.

We introduce the following notation to describe the energy errors of velocity and pressure at final time T = 1:

E(u) = ∥ue(·, 1) − uN
h ∥, E(p) = ∥pe(·, 1) − pNh ∥,

E(u, p) =
(
E(u)2 + E(p)2

)1/2
, ηN

=
√

τ
uN

h − uN−1
h

 .

We denote by O(u),O(p),O(u, p) the rates of convergence of u, p and (u, p) respectively. In Table 6.1, for the very small
mesh size h ( degree of freedom (DOF) = 791,387 ), we observe that the convergence rate O(u, p) is approximatively equal
to 1 and the indicator ηN decreases with respect to the time step τ which meets our analysis.

Table 6.2 shows that for a fixed time step τ = τref , all errors decrease with respect to the size mesh h. However, the
convergence rate is O(u) < 1 even on fine meshes. This could be due to the time discretization error, which in this case,
pollutes the finite element approximation.

Finally, using the adaptivity strategy, we present in Table 6.3 the evolution of the total error E(u, p), the indicator ηN

and the convergence order O(u, p) with respect to the time step. For these computations, DOF does not change too much
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Table 6.1
The energy errors, convergence orders and indicators for decreasing time steps in reference mesh.
Time step τ DOF E(u, p) Indicator ηN Order O(u, p)

1/10 791,387 0.609038 0.0480949 –
1/20 791,387 0.304934 0.0164095 0.998
1/40 791,387 0.150187 0.00569467 1.021
1/80 791,387 0.0721612 0.0019943 1.057
1/160 791,387 0.0329877 0.000701707 1.129
1/320 791,387 0.0133611 0.000247491 1.3

Table 6.2
The energy errors, convergence orders and indicators for uniformly refined meshes.
Mesh size h DOF E(u) E(p) ηN O(u) – O(p)

0.0333496 871 0.486614 0.0693221 0.000483728 –
0.0181035 3,211 0.283261 0.0204435 0.000481757 0.78 – 1.76
0.00843482 12,630 0.18849 0.00914296 0.000481295 0.58 – 1.16
0.0039905 49,857 0.117566 0.00305163 0.000481062 0.68 – 1.58
0.00197026 197,006 0.072015 0.00103792 0.000480987 0.70 – 1.55

Table 6.3
The errors, convergence orders and indicators for decreasing time steps on the adaptive mesh.
τ DOF E(u, p) ηN O(u, p)

1/10 154,192 0.612676 0.0480993 –
1/20 154,944 0.306787 0.0164091 0.9978
1/40 154,213 0.155407 0.00569445 0.981
1/80 153,878 0.08374 0.00199421 0.892
1/160 154,195 0.0540663 0.000701676 0.631
1/320 153,787 0.0462765 0.00024748 0.2244

Fig. 6.1. On the right: Results by adaptivity strategy with respect to the degree of freedom DOF. On the left: Results by adaptivity strategy and a uniform
refined meshes with respect to the time step.

≈ 154,000. We observe that between τ = 1/10 and τ = 1/80, the obtained solutions are good and can be compared with
those computed in the first test, see Table 6.1.

However, the CPU time is 5 times better when we use the adaptivity strategy. This is due especially to the size of the
resulting systems, i.e.: DOF = 197,006 (adaptivity strategy) and DOF = 791,387 (reference mesh). Whereas for τ > 1/80,
errors and orders deteriorated, once again it is due to the error arising from the time discretization. Fig. 6.1 shows clearly
these remarks. Fig. 6.2 presents the initial and final adapted meshes near the re-entrant corners and the corresponding
velocity and pressure are plotted in Fig. 6.3.

7. Conclusion

The system of unsteady Darcy’s equations in a three-dimensional axisymmetric domain considered here modeled the
time-dependent flow of an incompressible fluid such as water in a rigid porous material. By writing the Fourier expansion
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Fig. 6.2. Initial mesh on the left and the final mesh on the right.

Fig. 6.3. On the left: The isobar of the pressure. On the right: The vector field of the velocity.

of its solution with respect to the angular variable, we have observed that each Fourier coefficient satisfies a system of
equations on the meridian domain. We have proposed a discretization of these equations in the case of general solution.
This discretization is based on the backward Euler’s scheme for the time variable and the finite elements for the space
variables. We have proved a posteriori error estimates that allow for an efficient adaptivity strategy both for the time steps
and themeshes.Wehave applied this strategy to building amesh refinement,whichwehave tested in the L-shapedmeridian
domain. Numerical tests confirm our theoretical findings and show their robustness by (for instance) reducing the CPU time.

In future work, we will use others a posteriori error estimators for the time-dependent Darcy system in an axisymmetric
domain with mixed boundary conditions. The question that arises naturally, which approach is better than another one, in
certain sense, to solve this problem. Our attention will be carried towards the following approaches: the flux-jump error
estimators, see [21], and the patch-recovery method, see [22].
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