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Abstract 
By the current paper, we introduce and analyze a posteriori error estimator for a new dual mixed 
finite element method of the elasticity problem. In this method, the tensor of the constraints is 
approximated by Brezzi-Douglas-Marini fields augmented by rotational of the conforming bubble. 
We will show that this error estimator is reliable and efficient. Proof of reliability is based on 
Helmholtz decompositions of generalized tensor fields. The efficiency is demonstrated by the use 
of classical inverse estimates. Moreover, this estimator is independent of the coefficient of 
compressibility and thus remains valid in the incompressible limit case. 
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1. Introduction 

Let us fix a bounded domain   with a polygonal boundary . In this domain we consider 
isotropic elastic homogeneous material. Let  be the displacement field and f =

Γ
)u,(u 21  21 f,f  

 the body force by unit of mass. Thus, the displacement field u =  satisfies the 
following equations and boundary conditions: 

  2
2 L   21 u,u

 

                                                      
 div u f        in Ω,

u 0                     on ,

 


 
                                                   (1.1) 

 
where the stress tensor  u  is defined by: 
                         

                                                        u 2 u tr u .                                                    (1.2)  

 
The positive constants  and  are called Lamé coefficients. We assume that :   4

                                

                                                          0 1λ,μ λ , μ ,  μ   2     

where: 
                                                     21 μμ0           and        . 0λ 0 

As usual, ε (u) denotes the linearized strain tensor (i.e.,     tuu
2

1
uε  ) and  the 

identity tensor. The classical variational formulation of the boundary value problem (1.1) is the 

following : Find   7 4,       2  21 1
0u H Ω v H Ω ,      v 0


             such that: 
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                     21
0

Ω Ω

 2 u  :  v λ tr ε u tr ε v dx  f.vdx,      v H Ω .με ε                        (1.3)  

Problem (1.3) has a unique solution for every   2-1f H Ω    (cf. [4], corollary 11.2.22, 

p.285). Several works have already been made on some various mixed finite elements methods 
concerning a priori error estimates as well as a posteriori error estimators [1],[13]. In this article, 
we are concerned by the construction of an efficient and reliable a posteriori error estimator for the 
new dual mixed formulation introducing as new unknowns: 
 

     δuελtruμεσ 2: ,      trσp
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1
:         and       
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and the spaces:  

      2 2 22 2 2: H div,Ω  L Ω ,    div L Ω 


              , 

     22 2 2
0: L  L LM         , 

 where .    2 2
0L L ,      

Ω

Ω q Ω qdx
 

   
 

 0

The spaces  and M are respectively endowed with the natural norms: 

2

1
2

Ω0,

2

Ω0,Σ
)divττ(:τ   ,         

1
2 2 2 2

M 0,Ω 0,Ω 0,Ω
(v, ,q) : ( v q )    , 

where from now on the notation 
0,

. 


 (resp. (. , .)) means the  2L -norm ( -inner 

product) of matrix valued functions, vector valued functions or scalar functions according to the 

context. In the following, we suppose

 2L

  22f L Ω    . 

With these notations we recall that the dual mixed formulation of problem (1.1) consists in 

finding solution of:  , ( , , )  in u p M  

       
        

            

1
, α' , 0        ,

2

, v , 2 , v 0    v,θ,q ,

σ,τ div u as τ ,ω tr p       τ
μ

div as σ ,θ tr q p,q f M

 

 

      

       

                  (1.4) 

where   .μλ2μ

λ
α'


  

 

Here , where  means the standard notation for the contraction of two 

tensors, i.e., .  

  
Ω

dx τ:σ τσ,

2

1ji,

στ:σ 




τ:σ

ijijτ

By the present approach, the symmetry of the strain tensor  is relaxed by a Lagrange 
multiplier that is nothing else than the rotation ω. Problem (1.4) will be approximated by 
conforming finite element spaces hh M  of M  based on a triangulation  of the domain 

Ω from a regular family (regular in Ciarlet's sense [7]). The discrete problem has a unique 

solution  . We then consider an efficient and reliable a posteriori 

error estimator of residual type for the errors 

hT

 

 h hM, ( , , )   h h h hu p   

h hε: , r: p p , s: hσ σ        and . he: u u 
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Our analysis release on a residual error indicator , which is based on residuals on each triangle 

 and jumps across the interelement boundarieshTK  hE  . Our goal in this article is to prove 

reliability and efficiency of the indicator   uniformly in λ and h, in particular avoiding locking 
phenomena. 
The proof of the reliability of our indicator is based on some generalised Helmholtz decomposition 
of tensor fields. Efficiency follows by using classical inverse estimates [15]; see section 5 for more 
details. 

The schedule of this article is as following: section 2 recalls the discretization of our problem 
and we give some preliminaries and notations. In section 3, we establish some results on tensor 
fields like some particular Helmholtz decomposition. In section 4 we recall some standard tools, 
namely some inverse inequalities and interpolation error estimates for Clément's interpolant. We 
finish by establishing the efficiency and reliability of our error indicator   in section 5. 
Finally, let us precise some notations that will be used subsequently. For any tensor fields  

 and for any vector fields 2ji,1ij )(ττ     2 21H Ω


         21
1 2v v ,v H Ω ,     we define: 

               ,: 2211  tr  
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 . 

The norm and semi-norm of the standard Sobolev space  ΩH1  is denoted by 
,1

 .  and 
,1

 . , 

respectively. Finally, in order to avoid excessive use of constants, we will use the following 
notations: a ~ b and  stand for ba  bcabc 21   and cba  , respectively, with positive 

constants  independent of a, b,  and h. 21 c,cc,
 
2. Discretization 
2.1 Discretization of the domain Ω 

The domain Ω is discredized by a family of triangulations   0h h
T


made of triangles and regular 

in Ciarlet's sense (cf. [7]). Elements will be denoted by K and its edges are denoted by E. The set of 
edges of the triangulation will be denoted by h . Let x denote a nodal point, and let N be the set of 

all (internal and boundary) nodes of the mesh. The measure of an element or an edge is denoted by 

E and K , respectively. For an edge E of an element K, introduce the outer normal vector by n . 

Furthermore, for each edge E we fix one of the two normal vectors and denote it by . Introduce En
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additionally the tangent vector t n  such that it is oriented positively. Similarly set Et nE
 . The 

jump of some (scalar or vector valued) function v across an edge E is then defined as:  

                                           .       vvlim:
0α




v Ey,αnyαnyy EEE
  

As usual, let K  be the union of all elements having a common edge with K. Similarly let E  be 

the union of both elements having E as edge. By x we denote the union of all elements having x as 

node. 
 
2.2 Discrete Mixed Formulation 

This section concerns the approximation of the dual mixed problem (1.4). For each fixed 
triangulation , we introduce the finite dimensional spaceshT h  and  defined by the following 

way: 
hM

   



2 






















 h

K

K
Khhh TKR

rotb

rotb
KBDM ,,,

0

0
|; 1   

and       hTKhKhhhhh KKPqandKPKvMqvM  ),(|)(|,)(;,, 11
2  Kh P| 0  

 

where     211 KPKBDM  is the Brezzi- Douglas-Marini element (cf. [5]), b denotes the 

bubble function for the actual element K and 

K

K K
K

2 1

b b
rotb , .

x x

  
    


  The discrete problem 

associated with (1.4) is to find h  and   hhhh Mpu ,,  such that: h 

 
     

 

,h

h

as

tr q





h

h
K T

v


 

   

          

1
, , ' , 0            ,

2 .1)

, , , 2 , , 0    , ,

h h h h h h h h h

h h h h h h h h h h h h

div u tr p

div v as p q f v v q M

      

   

      

      

            (2

.



 

 
We recall that this problem has a unique solution. The existence and the uniqueness of the 

solution of discrete problem (2.1) are consequences of the following results (see [3]):  

independent of h, such that 

0* 

  2

0P K   , 1( ),  
h

h
K T

P K


   

      *h
0,

, ,
,

h h

h h h
h h

h

div v as
Sup v


 
 








 and the fact that the only solution to the 

homogeneous problem associated with (2.1) is zero. 
The analysis of the problem (2.1) and a priori error estimates were best dealt with in Boualem 

[3]. Our goal in this article is to propose and analyze a posteriori error estimates for problem (2.1). 
Let us mention that an a posteriori error estimates for the problem (1.4) was developed and 
analysed by Cartensen, Causin and Sacco [6] but using a finite element similar to the finite element 
PEERS (see Arnold, Brezzi and Douglas [2]). One of the interests of the method proposed here is 
that the approximation of the rotational of the displacement field ω is discontinuous. This is 
important for the implementation of such a problem (2.1) through a hybrid form of the latter (for 
details, see Farhloul and Fortin [9] and Boualem [3]). 

We close this section by introducing, for any bounded domain Ω in R2 with Lipschitz 
boundary, the space: 

                                      2 2 22 2H , : L  ;  L  rot rot 


            . 
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We recall the following formula of integration by parts: for all  Ωrot,Hρ  and for all 

  21 )(  

                              
 




2

1

2

1

,
, . :  . 

HH
tdxCurldxrot  .                                   (2.2) 

 
 
3. Decomposition for Tensor Fields 

For our further analysis, we require the following results on the decomposition of tensor fields 
which are essential for the subsequent proofs. 

Proposition 3.1.  Let . Then there exist    2 22τ L Ω


     21
0p H Ω    and  such 

that: 

  21H Ω  

                                                     Curlp  ,                                                                      (3.1) 
with the estimate: 

                                               .τp
Ω0,Ω0,Ω0,

                                                             (3.2) 

Proof.  Let be the unique solution of the following problem:    21
0p H Ω  

                                21
0

Ω

 τ p : ψ dx 0        for all ψ H Ω      .                                     (3.3) 

Applying Green's formula to this problem, we obtain: 

                         21
0

Ω

   div τ p  . ψ dx 0     for all ψ H Ω      . 

Then  is divergence free in the sense of distributions. Applying Theorem 3.1, p 37 of 

12 line by line to the tensor , we conclude that there exists a function  

such that 

pτ 

pτ    21H Ω    
Curlpτ  . Now, let us prove the estimate (3.2). Taking as test function ψ = p in 

(3.3), we obtain: 

                                         
Ω

2

Ω0,
dx p: τp

Ω0,Ω0,
pτ  .  

Thus, .τp
Ω0,Ω0,

  On the other hand, we have: 

                        
Ω0,Ω0,Ω0,

pτCurl  
Ω0,Ω0,

pτ 
Ω0,

τ2 . 

Consequently we have proved (3.2). 
 

Proposition 3.2.  Let . Then there exist    2 22τ L Ω


      21
0Z H Ω    and  such 

that: 

  21ψ H Ω  

                                         Curlψδ Zε trλZ 2τ   ,                                                       (3.4)                           
with the estimate:  

                                               .τψZε
Ω0,Ω0,Ω0,

                                                             (3.5) 

Proof.  Let  be the unique solution of the following problem:                21
0Z H Ω  

                     21
0

Ω Ω

 2 λ tr ε Z  δ :  dx  τ:  dx  for all H Ω .Z                         (3.6)  

This last equation implies that     δ Zε trλZ2μτ    is a divergence free tensor in the sense of 

distributions. Applying Theorem 3.1, p 37, of 12 line by line to the tensor 

    δ Zε trλZ2μτ   , we conclude that there exists a function    21ψ H Ω     such that: 
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     Curlψδ Zε trλZ2μτ   . Now, let us prove the estimate (3.5). Taking as test function φ 

= Z in (3.6), we obtain    Z, τdivZλZε2μ
2

Ω0,

2

Ω0,
 . 

By Cauchy-Schwarz's and Korn's inequalities, we derive from the previous equation: 

                                                       
Ω0,Ω0,

τZε  . 

By Lemma 3.4 10, there exists   21
0v H Ω    such that: 

                                                       div(v)= divZ  
and  

                                                    .divZv
Ω0,Ω0,

  

Equation (3.6) with φ = v yields: 

   
ΩΩ

2

Ω0,
dx v:τdx v:Zε2μdivZλ  

      
Ω0,Ω0,Ω0,Ω0,

vτvZε2μ 
Ω0,Ω0,

divZτ     by the above bound on  
Ω0,

Zε . 

Thus: 

                                                    
Ω0,Ω0,

τdivZλ  .                                                                  (3.7) 

By triangular inequality, we get 

                             .τdivZλZετCurlψ
Ω0,Ω0,Ω0,Ω0,Ω0,

   

Consequently, we have proved (3.5). 
 
4. Analytical Tools 
4.1 Bubble Functions, Extension Operator & Inverse Inequalities 

For our further analysis we require standard bubble functions and extension operators that 
satisfy certain properties recalled here for the sake of completeness. 
We need two types of bubble functions, namely and  associated with an element K and an 

edge E, respectively. Denoting by  the barycentric coordinates of K 

and by , i = 1, 2, the vertices of the edge E we define: 

Kb

K,
Eb

2, 1, 3, i N x,λ i
K
xi



ENxE
i 

                           and        if K
x

K
x

K
xK 321

λλ27λb  i
E
2

i
E
1

K

x

K

xE λ4λb  iKx   (i=1, 2), 

where  and  are the adjacent triangles to the edge E. One recalls that: 1K 2K

                        on K,       0Kb 0Eb  on ,E         
, ,

1
E

K ET
b b

 
  . 

For an edge E using temporarily the local coordinates system ( ,x y ) such that E is 

included into the x -axis, then the extension  Eext vF  of  ECvE   to is defined by ωC E

    ext EF v , Evx y  x . Now we recall the so-called inverse inequalities that are proved using 

classical scaling techniques 15. 
 

Lemma 4.1. (Inverse inequalities) Let  
0kv PK K  and  EPv

1kE  , for some nonnegative 

integers  and k . Then the following inequalities hold, the inequality constants depending on the 

polynomial degree 0k o 1k  but not on K, E or K  v,v
0k 1

r E : 

                                                    
K,0K

K,0

2

1

KK v~bv                                                                 (4.1) 

 

                                                  
K0,K

1
KK0,KK vhbv                                                          (4.2) 
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E,0E

K,0

2

1

EE v~bv                                                         (4.3) 

                                                   EE0,E
2

1

EK0,EEext ωK     ,vhbvF                                 (4.4) 

                                               .ωK    ,vhh)bv(F EE0,E
1

K
2

1

EK0,EEext                           (4.5) 

 
4.2 Clément Interpolation 

For the analysis we require some interpolation operator that maps a function from  to the 

usual space  made of continuous and piecewise linear functions on the triangulation. 

Hence, Lagrange interpolation is unsuitable, but Clément like interpolant is more appropriate. 

Recall that the nodal basis function 

 ΩH1

 hTS , 

 hS Ω,Tx   associated with a node x is uniquely determined 

by the condition: 

                                                ,x x yy          for all .Ny  

Next, the Clément interpolation operator will be defined via the basis functions .  hS Ω,Tx 
Definition.   (Clément interpolation operator) We define the Clément interpolation operator 

 by:    h
1

Cl TΩ,SΩH:I 

                                                Cl
N ω

1
I v:   v 

ω
x

x
x x




 
   

 
  . 

Finally we may state the interpolation estimates (for the proof we refer to 8). 
Lemma 4.2.    (Clément interpolation estimates)  Let  ΩHv 1 . If the triangulation  is regular, 

then for any
hT

hE   and for any  it holds: hTK 
 

E

K

1

2
E Cl 0,E ω

1
K Cl 0.K ω

 h v I v v ,                                                                                       (4.6)

 h v I v v .                                                                   





 

 



                     (4.7)

 
 
5. A Posteriori Error Estimation for Mixed FEM 

We propose an a posteriori error estimator for the errors hhh ωω:s,pp:r,σσ:ε   

and for our method. The local estimator accounts for the residuals on the triangle K and 

the jumps across the edges E. By the following, we denote the jump in the tangential direction 

of a discrete tensor by 

huu:e 

hρ . .
h E

E
t 

   For any hTK , the local residual error estimator K  is 

defined by:   

 
2

2 2 22 0 2

0,0,0,
0,

222

0, 0,

1
2 ' 2

2

 ( 2 ' 2 ) ( 2 ' 2 ) . 

K h h h h K h h h KKK
K

K h h h E h h h EK E E
E K

f P f as p tr h p

h rot p h p t

      

         


        

        .

 
  (5.1) 
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Here denotes the -orthogonal projection onto the space of piecewise constant function on the 

triangulation . As in 11,

0
hP 2L

hT  denotes the constant tensor field . The global residual error 

estimator is simply defined by:  








 
01

10

                                                                       .ηη
hTK

2
K

2 


  

Let us observe in the right hand of (5.1) that is the residual of –div(σ)=f, and that the 
two following terms have zero as their analogues for the exact solution. 

fPf 0
h

2

K0,hh
2
K χ2'2σh   hp  is negligible compared to these two terms. 

Also χ)2'2rot(σ hh   hp  and  
EEhh  t. χ)2'2(σ   hp have corresponding 

terms zero for the exact solution since .22'2 up    
 
5.1 Proof of the Reliability of Estimator 

We begin with the estimate for the error .σσ:ε h  Let us point out that all the estimates that 

will be established are independent of the lame coefficient λ for .0  

Proposition 5.1.   The following estimate holds: 

                                                                 η.ε
Ω0,
  

Proof.   Proposition 3.2 implies the existence of   21
0Z H Ω    and    21ψ H Ω    such that: 

                                           Curlψδ Zε trλZ2μχσas
2

1
ε h   .                                     (5.2) 

Moreover, the following estimate holds: 

                                  .χσas
2

1
εψZε

Ω0,
hΩ0,Ω0,

                                                         (5.3) 

It follows from  and identity (5.2) that  is a symmetric tensor fields that 
implies that divψ=0. By triangular inequality we have:  

hσσ:ε  Curlψ

       0, 0,
0, 0, 0,

1 1 1 1
.

2 2 2 2
h h has as as as         

 
  

      h     (5.4) 

In view of the definition of the error estimator η, it suffices to bound  
Ω0,

h χσas
2

1
ε  . The 

above decomposition allows to write: 

         





 



 CurlZtrZasas hh 2,
2

1

2

1
2

,0

  

                       





   CurlZtrZasCurlZtrZ h 2,

2

1
2,  

                CurlZtrZ  2,          

since       CurlZtrZ 2 is a symmetric tensor field. Then: 

           CurlZtrtrZas h ,,,2
2

1
2

,0




                                            (5.5) 
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To transform the last term of the right-hand side, let us consider  Clh I: . By the first 

equality of the continuous problem (1.4) with τ = Curl ψ   and the fact that divψ=0, we get 
    .p, Curlψtr'2μCurlψσ,   Thus: 

         hhhh CurlCurlpCurltrCurl  ,,,'2,  .                                (5.6) 

For the second term of the right-hand side of the last equality, taking as a test function 
 in the first equation of (2.1), we get: hhh ΣCurlψτ 

      hhhhhh pCurldivCurl ,'2,2,   

Combined with the previous equality and (5.6), we obtain: 
            hhhhhh pCurldivCurlpCurltrCurl ,'2,2,,'2,  . 

Remembering that divψ=0, it follows that: 
         

  hh

hhhh

div

pCurltrCurlpCurlpCurl




,2

,'2,'2,'2,




 

                      .,'2,2'2 ppCurltrCurlp hhhhh                (5.7) 

Now we will focus on the second term of the right-hand of (5.5). By using (5.2), we obtain 

                                     .
2

1 


 CurltrtrZtr 


  

Since 
 
λ

μ ' and since 2 ,
2 μ λ htr tr tr p tr h        


  we deduce that: 

     .,
2

1
'2',

2

,0 





 


 CurltrtrptrZtrtr h  

Using this last identity and (5.7) into (5.5) we finally obtain: 

    

 

  

2

0,

1
2 ' 2 ,

2

1
                                                           2 ' ,   

2

                                                             2 , '

h h h h h

h h

as p Curl

p tr tr Curl

Z

         

  

   



     

   
 

   2

0,
.                                      (5.8)tr 



                
We now estimate separately the three terms of the right-hand side of (5.8). For the first, by 

using Green's formula and the fact that h  and  are continuous through the edges we get: 

      

   

2 ' 2 ,   2 ' 2 .

                                                                     2 ' 2 . . .

h

h

h h h h h h h h
K T K

h h h E hE
E E

p Curl rot p dx

p t d


             

      





      

     s

 

 
 

Besides, applying Cauchy-Schwarz's inequality and Lemma 4.2 we obtain: 

    

   ..2'2

2'2,2'2

2

1

2
2

1

2

,0

2

1

2
2

1

2

,0

2















































h
E

h

h
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EE
EEEhhhE

TKTK
KhhhKhhhh

tph

prothCurlp










 
   

According to (5.3) we arrive at the estimate: 
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     .
2

1
,2'2

,0 

  hhhhh asCurlp                                             (5.9) 

For the second term of the right-hand side of (5.8), using the discrete Cauchy-Schwarz's 
inequality and the estimate (5.3), we obtain: 

     
2

1
22

1

2

2

1
   ,

2

1
'2


















 














    

 hh TK K

hh
TK K

hh dxtrpdxCurltrCurltrtrp         

                                                  



,02

1  has                                                               (5.10)     

For the third term of the right-hand side of (5.8) using the fact that:  

    rotZZZ
2

1
  and with the help of the green's formula, we get: 

       1 1
 :  :  :  .  

2 2
.Z dx Zdx rotZ dx div Zdx as rotZ dx      

    

           

Since    hhh asasfPfdivdivdiv    since  and  )( 0 , we deduce that: 

       0 1
 :   .  

2h hZ dx f P f Zdx as rotZ dx  
  

            

                        2

,0

2

1

2

,0
,0

2

1

2

,0

0  
2

1
 





 



















  ZrotasZfPf

KTK
h

TK
Kh

hh

 . 

By Korn's and Poincaré's inequalities and the estimate (5.3), we obtain: 
                  

     

   

0,0, 0,
0,

0, 0, 0,
0,

1
,                                                         (5.11)

2

1
.                                                                 (5.12)

2

h

h

rot Z Z Z as

Z Z Z as

  

  

 


  


 

 

  

  

 
Then: 

    .
2

1
: 

,0

 

  hasdxZ                                                                              

From (5.8), (5.9), (5.10) and this last bound, we obtain:  

    .'
2

1

2

1 2

,0
,0

2

,0




  trasas hh     

By triangular inequality and the fact that 1'2  , we have: 

    
2

2 2

0, 0, 0, 0,0,
0,

1 1
 .

2 2h has as tr tr          
  



    
21

2 
                                        

From (5.4), we get: 

   



,0

,0 2

1
has . Thus  

2
2 2

0,
0,

1
.

2 has   




    

Then: 
2 2 2

0, 0, 0,

1
2 .

2
tr    
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Since   2

,0

2

,0

2

,0 2

1


  trD , where  1
:

2
D tr     , we deduce that: 

2

,0

2

,0
2 


D .                                                                                                

Besides, by using the fact that  and according to [5], we obtain: 


 0 dxtr

 
 ,0,0,0,0

DD div  . Consequently, we obtain 
2 2

0, 0,
3   

 
 . 

Specifically, there exists  such that: 0c

2222

,0

2

,0

2

,0
3

2

1

2

1
3  cccc 


.  

Finally we get, 
0,

 

 . 

 
We turn now to bound the error hppr :  by the error estimator  . 

 
Proposition 5.2.    The following estimate holds: 

                                                                  
,0

r                                                                   (5.13) 

Proof.    From the second equations of the continuous problem (1.4), we get: 

     2
00,,

2

1
Lqqpqtr . Thus 

     





  2

0,
2

1
,,

2

1
Lqqtrpqppqtrtr hhhh  . 

Let  and by Cauchy-Schwarz's inequality we obtain:   2
0Lppq h


















,0
,0

,0

2

,0 2

1

2

1
hhhh pptrptrpp  . 

Consequently we have proved (5.13). 
 

Throughout the rest of this section, we use the notations  hhhh p 2'2:  and 

 2'2:  p . Since Proposition 5.1 and Proposition 5.2 bounds respectively 




,0,0 h  and 



,0,0 hppr  by a constant times , it suffices to bound 




,0h  in order to obtain an estimate for 



,0h . 

 
Lemma 5.3.   The following estimate holds: 

                                                            .
,0

 


 h  

Proof.    In view of Proposition 3.1, there exist   21
0v H     and   21H      such that: 

                                               


Curlh  v
2

1
,                                                        (5.14) 

with the estimate: 

                                              



,0,0,0

v h  .                                                (5.15) 

By Green's formula, we have: 
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  dxCurlCurl h


 







 v

2

1
: 

2

,0



  



 dxCurl h


: 
2

1
   

                                                                        


 dxCurl h


: 
2

1
. 

Let  Clh I  be the Clément interpolation of  . By the first equation of the discrete problem 

(2.1) with hCurlh   , we have  , .0hhCurl   

Since h  and  are continuous through the edges, we deduce that: 

 



 dxCurlCurl hh 


 : 

2

12

,0
 

                          dstdxrot h
TK K E E

EEhhh

h h





 

    
 

 . . 
2

1
 .  

2

1
 

                      
 


h h

EK
TK E

EEEEhKKh hthrot



 2

1

,0,0
 .  by (4.6) and (4.7). 

                    


 
































 ,0

2

1

2

,0

2

1

22 .
,0




Curlthroth
hh

K
E

EEEhE
TK

hK . 

Then:  

 
,0

Curl .                                                                                                                         (5.16) 

Taking the symmetric parts in (5.2) and (5.14), we get: 

     ,2)(  CurlZtrZSym   as due to (5.2)  Curl  is a symmetric tensor field 
and: 
                   CurlSymvppSymSym hh  2 2'2  . 

Hence: 
         . 2'2  2  CurlCurlSymppZtrvZ h   

Thus, we may estimate: 

      
           








dxppZtrvZCurlCurlSym

ppZtrvZ

h

h

 '2  2: 2

'2  2
2

,0




 

    

   dxppZtrCurl

dxppZtrvZCurl

h

h





)('2)((:

)('2)(()(2:)(2











                                           (5.17) 

      

    








,0,0

,0,0

'22

'2v22

h

h

ppZtrCurl

ppZtrZCurl




 

      

 . 2              

'2v2
2

1
2

,0,0,0

2

,0

2

,0

2









h

h

ppdivZCurl

ppZtrZCurl




 

From (5.16), (5.3) and (3.7) ( with   has
2

1
 ) we get: 
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,0

'2v2 hppZtrZ . 

By Korn's and triangular inequalities we get: 

        

      
0, 0, 0,

0,

v v 2 v 2 '

2 2 '

h

h

Z tr Z p p

Z tr Z p p

       

      

  



   

  

   
 

                              



,0,0 hppZ            

by the estimate (3.5) with   has
2

1
 . 

From (5.14), (5.16) and this last bound, we obtain by triangular inequality  



,0h . 

 
From the preceding Lemma, Proposition 5.1 and Proposition 5.2, we have immediately the 
following. 
 
Proposition 5.4.    The following bound holds: 

                                .
,0

 


 h  

 

It remains to prove that 



,0huu  in order to conclude that our estimator   is reliable. 

 
Proposition 5.5.    The following estimate holds: 

                                   



,0huu . 

 

Proof.   Let be such that (cf. [14]) (recall that    221 
 H he: u u  ) 

                                     div τ = e in , 
with  the property: 

                                    
 ,0,1

e .                                                                                         (5.18) 

Then, we may write: 

                                       .,,,
2

,0
 divudivudivuue hh 


 

In the first term of this right-hand side, we apply Green's formula and use the fact that u=0 on Γ, to 
obtain: 

                                    2

0,
, ,he u u d iv 


    . 

Now considering the global BDM interpolation operator h , setting hhh   , and 

using the fact that  is constant on each triangle of the triangulation, we get:  hu





 dxdivuudxe hh   .  : 

2

,0
 

                


 hhhhhh pu ,',,
2

1
,           by the first equation of the  

                                                                                                      discrete problem (2.1) 

            hh 





,
2

1
,

2

1
  

            





 hhh ,
2

1
,

2

1
. 

Furthermore, Cauchy-Schwarz inequality and the well-known error estimate: 
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KKKh h

,1,0
   

allow us to obtain: 

KK
TK

Khh he
h

,1,0,0,0,0
.  





2





























  ,1

2

1

22

,0 ,0


h
K

TK
hKh h . 

We conclude by the estimate (5.18). 
 
5.2 Proof of the Efficiency of the Estimator 

Recall further the notations ,2'2   p ,2'2  hhhh p   

hσσ:ε  ,  and hh ωω:s  ,pp:r  huu:e  . We treat separately the various contributions 
appearing in the estimator η. 
 
Theorem 5.6.   (Local lower error bound) For all hTK  the following local lower error bound 

holds: 

                      
KKK

rsefPf
KKhK 


,0,0,0,0,0

0  . 

 
In order to prove this theorem we need the following Lemmas. 
 
Lemma 5.7.    The following estimate holds: 

                                    
KhKh

K
hh pptrp

,0,0
,02

1    . 

Proof.     Cauchy-Schwarz's inequality and the fact that 0
2

1
 trp  yield: 

    dxtrptrpptrp hh

K

hh
K

hh 



 



   

2

1

2

1
 

2

1
2

,0

 

                            
K

hhKhKh trppp
,0

,0,0 2

1
   . 

This proves the Lemma. 
 
Lemma 5.8.    The following estimate holds: 

 
KhKhKhKhhhK ppproth

,0,0,0,0
2'2    . 

 
Proof.    Inverse inequalities and Green's formula yield: 

    dxprotbprot hhh

K

KKhhh

22

,0
2'2 2'2            by (4.1) 

                                       dxrotbrot
K

hKh    .    dxrotbCurl
K

hKh   .:   

                                
KhKKhKhKKh rothrotbCurl

,0

1

,0,0,0
.       by (4.2) 

                     1

0, 0, 0, 0,
2 ' 2h h h K h h hK K K

.
K

p p h rot p                

This proves the Lemma. 
 
Lemma 5.9.    For all hE  the following bound of the tangential jump error holds: 
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           ..2'2
,0,0,0,0

2

1

EEE
hhhEEEhhhE pptph


    

Proof. Let us set   EEhextE btF .:    , which belongs to   21
0 EH    .  

As   2
,

E
EH rot


    , by integration by parts with E , we obtain: 

                             . : . . .
E E E

E E Erot dx Curl dx t ds
  

     


    E  

As rot() = 0 and ,0
 E

E 
 this gives us: 

                                                    : 0
E

ECurl dx


  .  

For h  we integrate elementarily and obtain: 

   
E

EEEh

E

EEEh dstbt   . . .

2

,0

2

1

 
 


EK K

Eh dst


  . .  

                                 












EK K
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K

Eh dxCurldxrot
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EK K
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Eh dxCurldxrot


 :)(  )).(( 

                                 



EE K

KEKh
K

KEKh Curlrot



,0,0,0,0

)( . 

Lemma 5.8 and inverse inequalities (4.4), (4.5) lead to: 

 

 

21 1
12 2

0, 0, 0, 0,
0,

1
12

0, 0, 0, 0,

. [ . 

. ].

E

h E E K h h h E h EK K KE E E
KE

h h h E K h EK K K E E

t b h p p h t

p p h h t



    

    







           

        

 
 

The regularity of the triangulation enables us to bound 2

1
12

1

EKE hhh   for all EK with 

 Thus: .hTK 

      . . .
,0,0,0,0

2

12

,0

2

1

EEEhhhhE

E

EEEh tpphbt
EEE







  

We conclude by using the equivalence (4.3). 
 
Lemma 5.10.    The following estimate holds: 
 

        .2'2
,0,0,0,0,0 KhKhKhKhKKhhhK uupphph     

 
Proof.    Recall that .22'2 up    Now we have: 

2

,0

2

1
2

,0
2'2

K

KhKhhh bp   by (4.1) 
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K

hK

K

hhK dxbdxb  : :                                         

     
K

hhK

K

hhK dxuubdxb  : 2:                                         

    
K

hKh

K

hhK dxbdivuudxb )(. 2:                                          

KhKKhKhKh bdivuu
,0,0,0,0

(2   )                                         

KhKKhKhKh huu
,0

1

,0,0,0
     by (4.2)                                        
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KhKhKKhKhK

uuhpp
,0,0

1

,0,0,0
    . 

 conclusion we have proved that: 

      

h 

 
In

 
KhhKhKhh upphp

,0,0,0,0
2'2    . 

 

 

KhKKhK uh
,0

 

Khas
,0

 is easily estimated as    hh asas   appearing in the estimator K , and the 

 5.6 results from this and the sequence of Lemmas 5.7-5.10. 

ly 
coupling equations of linear elasticity with other equations such as the technological 
miconductors. Therefore, this method would be best suited for this kind of problem. 

      

 

pringer-Verlag, Berlin, 1996. 

proof of Theorem
 
6. Conclusions 
 

A new a posteriori error estimator for a dual mixed finite element method of the elasticity 
problem was introduced and analyzed. It was shown that this error estimator is reliable and 
efficient. Moreover, the estimator justifies an adaptive finite element scheme which refines a given 
grid only in regions where the error is relatively large. This method can treat natural boundary 
conditions, i.e., conditions of traction on a portion of the boundary of the domain and therefore it 
can be used for free boundary problems. On the other hand, the tensor of the constraints is natural
used in the 
process of se
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