Universal Journal of Applied Mathematics & Computation 3 (2015), 70-86
www.papersciences.com

A Posteriori Error Estimates for a Dual Mixed
Finite Element Method of the Elasticity Problem

M. Farhloul!, A.Younes Orfi?
!Département de mathématiques et de statistique
Université de Moncton, Moncton, NB, E1A 3E9 Canada
mohamed.farhloul@umoncton.ca

’Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis
Université de Tunis-El Manar, 1060 Tunis, Tunisie
ayounesorfi@yahoo.com

Abstract

By the current paper, we introduce and analyze a posteriori error estimator for a new dual mixed
finite element method of the elasticity problem. In this method, the tensor of the constraints is
approximated by Brezzi-Douglas-Marini fields augmented by rotational of the conforming bubble.
We will show that this error estimator is reliable and efficient. Proof of reliability is based on
Helmholtz decompositions of generalized tensor fields. The efficiency is demonstrated by the use
of classical inverse estimates. Moreover, this estimator is independent of the coefficient of
compressibility and thus remains valid in the incompressible limit case.
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1. Introduction
Let us fix a bounded domain € with a polygonal boundary I". In this domain we consider
isotropic elastic homogeneous material. Let (u;,u,) be the displacement field and f =(f1,f2)

2
€ [L2 (Q)] the body force by unit of mass. Thus, the displacement field u =(u1,u2) satisfies the
following equations and boundary conditions:

{—diva(u) =f inQ,
(1.1)
u=0 onl,
where the stress tensor G(u) is defined by:
G(u) =2u€(u)+/1tr(8(u))5. (1.2)

The positive constants p and A are called Lamé coefficients. We assume that : [4]

(K,u) € [7»0,+oo[><[pl, Hz]

where:

O, and 1)0.

1
As usual, € (u) denotes the linearized strain tensor (i.e., e(u)z E(Vu + (Vu)t)) and O the

identity tensor. The classical variational formulation of the boundary value problem (1.1) is the

following[4,7]: Find u e [Hg (Q)] = {V S [Hl (Q)] ’ V). = O} such that:
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gj; (2,[18(11) De(v)+Atr s(u)tra(v))dx=j fvdx, VVE[HB (Q)T. (1.3)

Problem (1.3) has a unique solution for every f e[H ] (cf. [4], corollary 11.2.22,

p.285). Several works have already been made on some various mixed finite elements methods
concerning a priori error estimates as well as a posteriori error estimators [1],[13]. In this article,
we are concerned by the construction of an efficient and reliable a posteriori error estimator for the
new dual mixed formulation introducing as new unknowns:

I )
1 2

and the spaces:
X= [H(div,ﬂ)]2 = { T€ [Lz (Q)}

=[(Q)] x P (Q)xL (@),

2x2

, divre [L2 (Q)]z} ,

where L (2) = {q el’(Q), | qdx= 0} .
Q
The spaces X and M are respectively endowed with the natural norms:

1 1
[ely = el +ldivelo)® o0l = (Vo +l6l0 +lalke )
where from now on the notation || . ||0’Q (resp. (., .)) means the L’ (Q)-norm (I (Q)-inner
product) of matrix valued functions, vector valued functions or scalar functions according to the
context. In the following, we suppose f € I:L2 (Q)]Z.

With these notations we recall that the dual mixed formulation of problem (1.1) consists in
finding (U, (u,, p)) in £ x M solution of:

i(o,r)+(divz',u)+(as(t),a))+a'(trz',p)=O VreZ, (14)
(diva,v)+(as(a),<9)+(tra,q)+ 2(p.g)+(f.v)=0 V(v.6,q)eM

where o'=

2u(7»+ u)

Here (G T)=| o:1dx, where 6:1T means the standard notation for the contraction of two

0 —

2
tensors, 1.€., 6 : T = Z%TU-
i,j=1
By the present approach, the symmetry of the strain tensor o is relaxed by a Lagrange
multiplier that is nothing else than the rotation ®. Problem (1.4) will be approximated by
conforming finite element spaces X, x M, of X x M based on a triangulation 7, of the domain
Q from a regular family (regular in Ciarlet's sense [7]). The discrete problem has a unique

solution(ah,(uh,a)h, ph)) € X, xM,. We then consider an efficient and reliable a posteriori

error estimator of residual type for the errors e:=6—0,,1:=p—p,,8:=@w—®, and e:=u-—u,.
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Our analysis release on a residual error indicator7;, which is based on residuals on each triangle
K €T, and jumps across the interelement boundaries E € &, . Our goal in this article is to prove
reliability and efficiency of the indicator 77 uniformly in A and h, in particular avoiding locking

phenomena.

The proof of the reliability of our indicator is based on some generalised Helmholtz decomposition
of tensor fields. Efficiency follows by using classical inverse estimates [15]; see section 5 for more
details.

The schedule of this article is as following: section 2 recalls the discretization of our problem
and we give some preliminaries and notations. In section 3, we establish some results on tensor
fields like some particular Helmholtz decomposition. In section 4 we recall some standard tools,
namely some inverse inequalities and interpolation error estimates for Clément's interpolant. We
finish by establishing the efficiency and reliability of our error indicator 77 in section 5.

Finally, let us precise some notations that will be used subsequently. For any tensor fields
2x2 2
T=(Tj) 5 € [Hl (Q)] and for any vector fields v = (V1 ,VZ) € [Hl (Q)] , we define:
rt=1,+7,,,

diV(T):: arll +8T12 8T21 +8T22
ox, 0x, ox, 0x, )

as(t) =1, — 1,

rot(r):= or,, _82'” 0r,, _81’21
ox, oOx, oOx, 0x, )

o, _ov,
0X,
v,
0X,
rot(v) = % - %,

1 2

div(v) = % + %

1

Curl(v):= g: ,
2
ox

1

ox, Ox,

The norm and semi-norm of the standard Sobolev space H' (Q) is denoted by || . || o and | . | Lo’
respectively. Finally, in order to avoid excessive use of constants, we will use the following
notations: a ~ b and a<b stand for cb<a<c,b and a<cb, respectively, with positive

constants ¢,c,,C, independent of a, b, A and h.

2. Discretization
2.1 Discretization of the domain Q

The domain € is discredized by a family of triangulations ( 1, ) 1.0 made of triangles and regular
in Ciarlet's sense (cf. [7]). Elements will be denoted by K and its edges are denoted by E. The set of
edges of the triangulation will be denoted by &, . Let x denote a nodal point, and let N be the set of
all (internal and boundary) nodes of the mesh. The measure of an element or an edge is denoted by
|K | and |E

Furthermore, for each edge E we fix one of the two normal vectors and denote it by 7 . Introduce

, respectively. For an edge E of an element K, introduce the outer normal vector by n .
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additionally the tangent vector ¢ = n" such that it is oriented positively. Similarly set t,=n 2 The
jump of some (scalar or vector valued) function v across an edge E is then defined as:

[vO)], = lim V(v +om, )~ v(y-an;),  yeE.
As usual, let @, be the union of all elements having a common edge with K. Similarly let @, be

the union of both elements having E as edge. By @, we denote the union of all elements having x as
node.

2.2 Discrete Mixed Formulation
This section concerns the approximation of the dual mixed problem (1.4). For each fixed

triangulation 7}, we introduce the finite dimensional spaces X, and M, defined by the following

way:

2 rotby 0
Zh: ThEZ;Th |KE[BDM1(K)] +a +IB 7a:ﬁ€R: VKET},
0 rotby

and M), = {(Vha‘gh,%)e M, | e[R(K], 6,|cR(K) and g, |ceR(K), VK ETh}

where BDM (K ): [Pl (K)]2 is the Brezzi- Douglas-Marini element (cf. [5]), by denotes the

bubble function for the actual element K and rotb, :[ZbK ,—aab—Kj. The discrete problem
x2 x]

associated with (1.4) is to find o, €X, and (uh,a)h,ph )EMh such that:
i(ah,rh)+(divrh,uh)+(as(rh),a)h)+a'(trrh,ph)=O Vr, €3, o
(divah,vh)+(as(0'h),Gh)+(tr0'h,qh)+2(ph,qh)+(f,vh):O V(v,,6,.9,) €M,.

We recall that this problem has a unique solution. The existence and the uniqueness of the
solution of discrete problem (2.1) are consequences of the following results (see [3]): 3/ *>0

independent of h, such that Vv, € H [PO (K)]2 , Vo, e H B (K),

KeT, KeT,

Sup (dlvrh,vh)+(as(rh ),Hh)
7.1
homogeneous problem associated with (2.1) is zero.

The analysis of the problem (2.1) and a priori error estimates were best dealt with in Boualem
[3]. Our goal in this article is to propose and analyze a posteriori error estimates for problem (2.1).
Let us mention that an a posteriori error estimates for the problem (1.4) was developed and
analysed by Cartensen, Causin and Sacco [6] but using a finite element similar to the finite element
PEERS (see Arnold, Brezzi and Douglas [2]). One of the interests of the method proposed here is
that the approximation of the rotational of the displacement field « is discontinuous. This is
important for the implementation of such a problem (2.1) through a hybrid form of the latter (for
details, see Farhloul and Fortin [9] and Boualem [3]).

We close this section by introducing, for any bounded domain Q in R? with Lipschitz
boundary, the space:

H(ror,Q)i={r[(Q)] 7 5 ror(r) e[L2(Q)T ] -

>p

(vh,Hh )H and the fact that the only solution to the
0,Q
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We recall the following formula of integration by parts: for all pe H(rot, Q) and for all

pelH' @]’

I rot(p) . godx—j p:Curlp dx=<p.t,g0>H—;(r),H§(r). (2.2)
Q

Q

3. Decomposition for Tensor Fields
For our further analysis, we require the following results on the decomposition of tensor fields
which are essential for the subsequent proofs.

Proposition 3.1. Lette [Lz (Q)] e . Then there exist p € [Hlo (Q)] ’ and @ e [Hl (Q)] ’ such
that:

t=Vp+ Curlyp, (3.1)
with the estimate:
”Vp”o,g + ”v(p”o,g = ”1’-”0,9' 3.2)
Proof. Let pe [Hé (Q)] ’ be the unique solution of the following problem:
J. (t—-Vp):Vydx=0  for all\ye[Hg (Q)]2 : (3.3)
Q

Applying Green's formula to this problem, we obtain:
2

—.[ diV(t—Vp) Lydx=0 forall\ue[H})(Q)] )
Q

Then t—Vp is divergence free in the sense of distributions. Applying Theorem 3.1, p 37 of

2
[12] line by line to the tensort—Vp, we conclude that there exists a function @ € [Hl (Q)}

such that T—Vp = Curlg . Now, let us prove the estimate (3.2). Taking as test function y = p in
(3.3), we obtain:

[Voloa =] ©:Vpdx <[, o[VPl,,-
Q
Thus, ||Vp|| 0.0 < ||1:|| 0a On the other hand, we have:

[Vel,q =ICurlel,q =[[v =Vl o <lely.q + [VPloq < 2l o
Consequently we have proved (3.2).

Proposition 3.2. Lette [L2 (Q)} “* Then there exist Z e [H}J (Q)] *and ye [Hl (Q)] * such
that:

t=2u&(Z)+ A tr(e(2))d + Curly, (3.4)
with the estimate:
||8(Z)”0,Q + ”VWHO,Q < ”T"o,g' (3'5)
Proof. LetZ e [Hg ( Q)] ’ be the unique solution of the following problem:
J (Z,ug(Z)+k tr(e(Z)) 8):V¢ dx = J‘ 1: Ve dx forall pe [Hg (Q)] 2. (3.6)
Q Q

This last equation implies that T — 2pg(Z) —A tr(S(Z)) d is a divergence free tensor in the sense of
distributions. Applying Theorem 3.1, p 37, of [12] line by line to the tensor

©—2ue(Z) -1 tr(e(Z))3 , we conclude that there exists a function y e [Hl (Q)} * such that:
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©—2ug(Z) -1 tr(e(Z))d = Curly . Now, let us prove the estimate (3.5). Taking as test function ¢
= Z in (3.6), we obtain 2},L||8(ZX|;Q + 7»||diVZ||§ﬂQ = (r ,VZ).

By Cauchy-Schwarz's and Korn's inequalities, we derive from the previous equation:
”8(Zl|o,g = ”T”O,Q'

2
By Lemma 3.4 [10], there exists v € I:H:) (Q)] such that:

div(v)=divZ
and
[VVl.q <[divZ], -

Equation (3.6) with ¢ = v yields:
7\,||diVZ||(2),Q = —ZpI e(Z): Vvdx + Jr :Vvdx
Q Q

< 2u[e(Z)], o[V V], o+l oIV V], < el oldivZ], , by the above bound on [le(Z)]
Thus:

0,Q"

Mdivz, o <[, (3.7)
By triangular inequality, we get
[Curtyfl, o <[l o + (2N, o+ HdivZ], o <[], o
Consequently, we have proved (3.5).
4. Analytical Tools
4.1 Bubble Functions, Extension Operator & Inverse Inequalities

For our further analysis we require standard bubble functions and extension operators that
satisfy certain properties recalled here for the sake of completeness.

We need two types of bubble functions, namely b, and b, associated with an element K and an
edge E, respectively. Denoting by A\ ,x, e NMdK,i=1,2,3, the barycentric coordinates of K
and by xiE e NN E ,i=1,2, the vertices of the edge ECOK we define:

by =27A A AS  and by =4A5AT if xeK, (i=1,2),
where K| and K, are the adjacent triangles to the edge E. One recalls that:

by=0ondK, b;=0o0ndw, |b, ., =|b],., =1

For an edge EcOK using temporarily the local coordinates system (x,) ) such that E is

xt(VE) of v EC(E) to C(coE)is defined by

(VE)(X, y) =Vg (x) Now we recall the so-called inverse inequalities that are proved using

included into the x -axis, then the extension F,
FCXt

classical scaling techniques [15].

Lemma 4.1. (Inverse inequalities) Let v, € P (K ) and v € Pkl(E), for some nonnegative
integers k, and k. Then the following inequalities hold, the inequality constants depending on the

polynomial degree k,or k, butnoton K, E or vy, v,:

1
vebill o~ ||VK||0’K 4.1)
0,K

”V(VKbK X|0,K = h;”VK ||0,K (4'2)
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1
VebE| ”VE”o,E (4.3)
0,K
L
E . (VE )bE”O,K < hé”VE”O,E’ VK c o, (4.4
1
[VE (v )b <hEh Vel VK C oy (4.5)

4.2 Clément Interpolation
For the analysis we require some interpolation operator that maps a function from H' (Q) to the

usual space S (Q, T, h) made of continuous and piecewise linear functions on the triangulation.
Hence, Lagrange interpolation is unsuitable, but Clément like interpolant is more appropriate.
Recall that the nodal basis function @€ S(Q,Th ) associated with a node x is uniquely determined
by the condition:

¢X(J’):5x,y forally e N.
Next, the Clément interpolation operator will be defined via the basis functions ¢, e S(Q,Th ) .
Definition.  (Clément interpolation operator) We define the Clément interpolation operator

I, :H'(Q)— S(Q,T,) by
pald

Finally we may state the interpolation estimates (for the proof we refer to [8]).
Lemma 4.2. (Clément interpolation estimates) Letv e H' (Q) If the triangulation T, is regular,

then for any £ € &, and for any K € 7, it holds:

[gvi=
xeN

hF? "V_IGV"QE (46)
By <[, - @7

5. A Posteriori Error Estimation for Mixed FEM
We propose an a posteriori error estimator for the errors €. =6—-6,,r'=p—p,,S=0— 0,

and €:=u—u, for our method. The local estimator accounts for the residuals on the triangle K and
the jumps across the edges ECOK. By the following, we denote the jump in the tangential direction

of a discrete tensor p, by U P, ZEH . For anyK €T, , the local residual error estimator 77, is
E
defined by:

2 0 |12 2
S _Hf_B’ fHO,K +HaS(O'h )HO,K +

2

1
pitotroy| oy +2ua po+2um ), +
K

(5.1)

+2ua' p,d+2uw, ) .t

h ||rot(0',1 +2ya'p,75+2ya)h;()||(2)’l< + Z h,
EcokK
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Here P]? denotes the L* -orthogonal projection onto the space of piecewise constant function on the

0
triangulation T, . As in [11], ¥ denotes the constant tensor field (1 0 J The global residual error

estimator is simply defined by:

=D N

KeT,

Let us observe in the right hand of (5.1) that f —P}? f is the residual of —div(c)=f, and that the
two following terms have zero as their analogues for the exact solution.

hi”ch +2ua' p,6+2 ,ua)hxni . is negligible compared to these two terms.
Also rot(o, +2ua' p,o +2um,y) and U(csh +2ua' p,o+2uwy). tE|]E have corresponding
terms zero for the exact solution since o +2ua' pd +2uwy =2 uVu.

5.1 Proof of the Reliability of Estimator
We begin with the estimate for the error € := 6 —6,. Let us point out that all the estimates that

will be established are independent of the lame coefficient A for A4)4,.
Proposition 5.1. The following estimate holds:

”8”0,9 =M.

Proof. Proposition 3.2 implies the existence of Z € I:H:) (Q)} ’ and y € [Hl (Q)] ’ such that:

€ +%as(0h W =2us(Z)+ 1 tr(g(2)) 8+ Curly . (5.2)
Moreover, the following estimate holds:
1
||?,(ZX|0,Q + ||V\|/||0’Q <lle +Eas(c5h )x (5.3)
0,Q

It follows from €:=0—0, and identity (5.2) that Curly is a symmetric tensor fields that
implies that divy=0. By triangular inequality we have:

lele < +

0,0

(5.4)

- 8+%as(0'h);(

1
+ ﬁ”as (Gh )Ho,g :
s+%as(0h)x

1 1
8+5as(0'h);( Eas(ah);(

0,Q

. The

0,Q

In view of the definition of the error estimator 1, it suffices to bound

above decomposition allows to write:

2 :(8+%as(ah);(,Z,ug(Zﬁ/Ur(g(Z))5+Curlt//J

g%as(ah )z

0,Q

—(e.2u6(2 )+ 2r{e(2)5 + Curly )+ [%as(ah))(,2y8(2)+ltr(g(Z))5+Curle

(
=(,2ue(2)+ Atr((2))S + Curly )
since 2 ,ug( )+ ﬁtr( (Z ))5 + Curly is a symmetric tensor field. Then:

2

=2u(e,8(2))+ Altre,tr(e(2)))+ (e, Curly ) (5.5)

e +Las(o, )y
2 0,0
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To transform the last term of the right-hand side, let us consider v, =1,y . By the first
equality of the continuous problem (1.4) with T = Curl y €X and the fact that divy=0, we get
(0, Curlw) =-2ua' (tr(Curl\y) , p). Thus:

(,Curly) = 2 ua'(tr(Curly ), p)+ (o, Curlly, —v))-(o,,Curly,). (5.6)
For the second term of the right-hand side of the last equality, taking as a test function
1, = Curly, € X, in the first equation of (2.1), we get:

(0, Curly, ) = 2pldivy,, @,) =2 ua' (Curly,, p,5)
Combined with the previous equality and (5.6), we obtain:

(5, CW”ZW) = —Zya'(tr(Curl;y), p)"" (O-h 3 Curl(‘//h - W))"' 2:u(di‘}l//h » @y, )+ 2/10"(C”rl‘//h 7ph5) .
Remembering that divy=0, it follows that:

(e,Curly)= (o, +2ua' p,8,Curlly, —w))+2ua' p,8, Curly ) =2 ua' (tr(Curly ), p)+

2uldivly, ), @,)
=(o, +2ua' p,6+2uw,y,Curl(y, —w))+2ua' (tr(Curly ), p, — p). (5.7

Now we will focus on the second term of the right-hand of (5.5). By using (5.2), we obtain

ir(e(2)) = m(tr(g) _ir{Curl(y)))

, A .
Since ———— = pa' and since tr¢ =tro —tro, = -2 p —tro,, we deduce that:

2 ( n+ ?»)
Mtre,tre(Z))= ua' ||trg||(2m + Zya'(p + % tro,,tr(Curl 1//)]

Using this last identity and (5.7) into (5.5) we finally obtain:
2

g+%as(ah);( =(o, +2ua' p,6+2pm,x,Curl (v, —y)) +

0,Q

2yav[ph+%trah,tr(Curh//)j +

2u(e,e(Z))+ ua'|or(e)[, - (5.8)

0,Q

We now estimate separately the three terms of the right-hand side of (5.8). For the first, by
using Green's formula and the fact that  and i, are continuous through the edges we get:

(Jh+2,ua'ph§+2,ua)h;(,Curl(wh—1//)): > I rot(o, +2ua’ p,+2uw,x) (v, —w) dx—

Kel), k

> | (on+2ua po+2um,z) 4] ), (v, ~w) .

Eegy E

Besides, applying Cauchy-Schwarz's inequality and Lemma 4.2 we obtain:

2 2
(O'h +2ua'p,d+ 2ya)h;(,Curl(y/h —1//)) < { Zh,z( Hrot(ah +2ua'p,o+ Zua),,;(];,(} { Z HV ‘//H; } +

KeT, KeT),

{Zh H o, +2ua' ph5+2,ua)h;( 05} [ZV(//@E}

Eeé,

According to (5.3) we arrive at the estimate:
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(0, +2pa' p,6 +2pw, 2, Curlly, —v)) <71 (5.9)

s+Las(o, )y
2 0,0
For the second term of the right-hand side of (5.8), using the discrete Cauchy-Schwarz's

inequality and the estimate (5.3), we obtain:

Qua (ph-l-;trah,tr Curll//j {Zj tr(Curl(y } {Z J-(ph —trahj dx:l

KeT, g KeT,

<n (5.10)

s+ aslo )z

0,Q
For the third term of the right-hand side of (5.8) using the fact that:

1
6‘(2 ) =VZ - E(rotZ ) 7 and with the help of the green's formula, we get:

.[g:g(Z)dx .[g Vde——I rotZ);(dx——.[ dive. de——J. as (rotZ)dx.
Q

Q
Since dive = divo —dive, =—(f — P f) and since as(s)= —as(ah ), we deduce that:

g:g(Z)dx=.[ (f—PhOf) .de+lj as(ah) (rotZ)dx

Q=

(sh-.] Mt gt [,

By Korn's and Poincaré's inequalities and the estimate (5.3), we obtain:

1
Hrot(Z)HO’Q < ||VZ||O’Q < He(Z)HO’Q < 5+5as(0'h) , (5.11)
0,Q
1
12l <V 2], o <[e(2)], < ¢ +§as(0h) . (5.12)
Then:
J. g:6(Z)dx<n £+las(ah);(
Q 2 0,Q

From (5.8), (5.9), (5.10) and this last bound, we obtain:
2 ' 5

+p'lire],
0,Q

=<7

0,Q

g+%as(0'h))( 8+%as(ah);(

By triangular inequality and the fact that 2ua'<1, we have:

e+%as(0'h);(

? 1 1
< U(IIEIIO,Q +|as(o, )HO,Q)+5||fr6II§,Q <1el,, +7° +5||fr€||§,g
0,Q

From (5.4), we get:

2
+n°.

0,Q

+7 . Thus ||g||(2)Q <

0,0

el <

1 1

8+Eas(0h))( g+5as(0'h);(
2 1 2 2

then: [ef =3 el < el 420
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Since Hé‘DHz’Q = ”8"(2]9 —%”tr(gmzp , where el =¢ —%tr(s) O , we deduce that:

2
le” ] <lelq + 20
Besides, by using the fact thatj tre dx =0 and according to [5], we obtain:

Q

”8”0,9 < HSDHO o +||a’iv&'||0,Q < HSDHO o +77. Consequently, we obtain ||8||§Q < 77”8”0’9 + 3772 )
Specifically, there exists ¢)0 such that:
1 1
el <l +3en” < Lol 4L w30

Finally we get, ||5||0,Q <n.

We turn now to bound the error »:= p — p, by the error estimator 7.

Proposition 5.2.  The following estimate holds:
1700 <7 (5.13)

Proof. From the second equations of the continuous problem (1.4), we get:

%(tra,q)+ (p,q) =0 Vge Lf)(Q). Thus

1 1
E(tra—trah,q)+(p—ph,q)=—(19h +5f7”0h,6]j VQEL%)(Q)-

Letg=p—-p, € Lf) (Q) and by Cauchy-Schwarz's inequality we obtain:

}np—phno,Q.

1 1
Ip=pilha 2| Slrela+|pi+ 5t
a= |2 2

Consequently we have proved (5.13).

0,Q

Throughout the rest of this section, we use the notations f, =0, +2ua'p,0 +2uw, y and
p=0c+2ua'pd+2uwy . Since Proposition 5.1 and Proposition 5.2 bounds respectively

||g||O,Q:||O-_O-h||O,Q and ||r||0,Q=||p—ph||0’Q by a constant times m, it suffices to bound

||,B -5, ||0,Q in order to obtain an estimate for ||a) -, ||0’Q .

Lemma 5.3. The following estimate holds:

”ﬂ - 'Bh”o,g =1

Proof. In view of Proposition 3.1, there exist v € [Hé (Q)} ’ and @ € [Hl (Q)} ’ such that:

L(,5’—,5’,1):VV+Curl(p, (5.14)
2u
with the estimate:

”VV”o,Q + ||V¢||O,Q = ”ﬂ - P, ||0,Q' (5.15)

By Green's formula, we have:
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||Curlgo||;Q =£ Curlp: (i(ﬂ—ﬂh)—VV]dx = i;[ Curle: (ﬂ—ﬂh )dx

1
=———| Curlep: B,dx.
2ﬂ£ urle: B,dx

Let ¢, = I, be the Clément interpolation of ¢. By the first equation of the discrete problem
(2.1) with 7, = Curlg, , we have (Curlg,,3,)="0

Since ¢, and ¢ are continuous through the edges, we deduce that:

1
||Curlgo||iQ = —j Curl((oh —go):,Bhdx

:—z I rot ﬁh dx__z"-ﬂh ”

KeTh K Eecf,

= Z”rot(ﬂh mo,]{ hK|

o+ 2|18, 1] EHO,E@”V(””% by (4.6) and (4.7).
Eeg,

(sl ) o gplc ) e,

KeT,

Then:
|Curig, , <. (5.16)
Taking the symmetric parts in (5.2) and (5.14), we get:

Sym(e)=2u &(Z)+ A tr(s(Z)) &+ Curly, as due to (5.2) Curl(y) is a symmetric tensor field
and:

Sym(B - ,)=Sym(&)+2uc'(p— p, )5 = 24 &(v)+ 2 Sym(Curl(gp)).
Hence:
2ue(Z-v)+ Atr(e(2))5 +2ua'(p— p, ) = 24 Sym(Curlp)— Curly.

Thus, we may estimate:

||2y g(Z - v)+ A tr(e(Z))5 + 2,ua'(p - D, )é'”zg =

I(Zy Sym(Curlp)—Curly ): (24 &(Z —v)+ A tr(e(2))0 + 2ua'(p— p, )5) dx =
j 20 Curl(p)): 2us(Z —v)+ Atr(e(2))S + 2ua' (p— p,)S) dx—

Q

(5.17)
j Curly : (A tr(e(Z)) S +2ua'(p - p,)d) dx
Q

<24|Curlyl, |pue(z ~v)+ 2 tr(e(Z))5+2ua'(p—ph 9], 0 *
V2| curty)|, |2 o(e(2))+ 20 (p - p, )ﬂo,g
<2uCurte 4 |puelz - )+ 20(e(2)0+ 20 (p- p o, +
curty], Pz, , +|p- i), )

From (5.16), (5.3) and (3.7) (with 7 =& + %as(ah )z ) we get:
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H2,ug(Z —v)+ A tr(e(Z2))5 +2ua'(p-p, )5”059 <7.
By Korn's and triangular inequalities we get:
Voo <l (<20 (2 =V) w210 (e(2)) 6+ 20a'(p = 1) o], +

H2/J e(Z)+2 z‘r(g(Z))5+2,uov'(p—ph)5”0’Q
= 77+||€(Z]|0,Q +”p_ph”o,(z =7
by the estimate (3.5) with 7 =¢ + %as(ah ))(

From (5.14), (5.16) and this last bound, we obtain by triangular inequality || B - B, || oo <1

From the preceding Lemma, Proposition 5.1 and Proposition 5.2, we have immediately the
following.

Proposition 5.4. The following bound holds:

o=, o <
It remains to prove that ||u —u, || 0o <1 inorder to conclude that our estimator 77 is reliable.

Proposition 5.5. The following estimate holds:
”u - uh”o,g =1.

Proof. Let 7€ [H ! (Q)]zxz be such that (cf. [14]) (recall that e:=u—u,)
divt=einQ,
with the property:
Il <lello- (5.18)
Then, we may write:
||e||§’Q = (u —u,, divz') = (u,divz')— (uh , divz').

In the first term of this right-hand side, we apply Green's formula and use the fact that u=0 on I, to
obtain:

”6”3,9 = _(V% T) - (uh , divr) .
Now considering the global BDM interpolation operator[1,, setting 7, =I1, 7 €X,, and

using the fact that u, is constant on each triangle of the triangulation, we get:

||e||(21Q = —J‘ 7:Vudx —J u, .divr,dx
Q

o
=—(Vu, r)+2l(0'h, t,)+(z,,0,7)+a'(z,, p,0) by the first equation of the
7
discrete problem (2.1)

1 1
= _E(/gaz')"'a(ﬂharh)

1 1
_Z(ﬁ_ﬂh"[)—i_Z(ﬁharh _T)'

Furthermore, Cauchy-Schwarz inequality and the well-known error estimate:
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”T - Hh z-”0,1{ = hK|T|1,K

allow us to obtain:

1
2
<Al DVl <182l SHIAL, | }nrnm-
T}, €T,

We conclude by the estimate (5.18).

5.2 Proof of the Efficiency of the Estimator

Recall further the notations f =0 +2ua' pd+2uwy, p, =0, +2ua'p,o+2um,y,
€=06-06,,I'=p—p,, S=0—00, and e:=u—u, . We treat separately the various contributions
appearing in the estimator 1.

Theorem 5.6. (Local lower error bound) For all K €7 the following local lower error bound
holds:

e <[ £ =B+l + e

+s

+[

0,0 0, 0,0

In order to prove this theorem we need the following Lemmas.
Lemma5.7. The following estimate holds:

<lp=pPilss o=l
0.K

1
D +Etr0h

1
Proof. Cauchy-Schwarz's inequality and the fact that p + EZI’O' =0 yield:

2

g T e

1
p,+ Etrdh

1
<(lp=pil ool s +5 0,

0.K
This proves the Lemma.

Lemma 5.8. The following estimate holds:
hlrotloy +2ua p,5 +2p0,1), <o =0l +lp = Pill +lo- @], -

Proof. Inverse inequalities and Green's formula yield:

||rot(ah +2ua' p,d + 2,ua)h;()||ZJ< < I bK||rot(ah +2ua' p,o+ 2ua)h;51|2dx by (4.1)
K

= —J rot(ﬂ—ﬂh ) erot(,Bh )dx = —j (,B—,Bh)3 Curl(bK'VOt(ﬂh ))dx

X X
< ”'B - 'Hh”o,Kncurl(bK 'rOt(ﬂh )MO,K = ”ﬂ - 'Bh“O,K hl}l ”rOt(ﬂh ]|0,K by (4.2)
<(lo=oull +lp=pl,c Hlo-ayl, )i [rot (0, + 200 p,6 + 200, 1),

This proves the Lemma.

Lemmab5.9. Forall E € &, the following bound of the tangential jump error holds:
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1
h} HH(Gh +Ziua'ph5+2/1@/1}()15”5”0,5 =< ||0'—0'h|0,wE +||p —ph| +||a)—a)h|

0,0p 0,0p

2

Proof. Letus set y, =F,, (H B, tE|])bE , which belongs to [H . (a)E )] .

2
As ﬂ|wE € [H(roz‘, (0B )] , by integration by parts with /., we obtain:
J(rot(ﬂ)) . l//de—IﬂICul’ll//dez I (B.t;) .y ds.

p Owy

Asrot(f) =0and ¥ E‘ = 0, this gives us:

Owg
j- B Curly .dx =0.
For 3, we integrate elementarily and obtain:
2

“Hﬂh-rEl]Eb,%

:IUﬂh.tE|]E.wEds = jﬂh.t.wEds

0.E Kcor oK

= > || rot(B).y x| B, :Curledx}

= I (rot(B,)). I//de+j (B=5): Curll//de}

Kcog |
< 2 lrotBllvel, + 2 18-8lcurtv], .
Lemma 5.8 and inverse inequalities (4.4), (4.5) lead to:
1 1
D0l i] < T (ol lo-al lo-nl) 1ol
0.E <@k
1
tlo=oull i +lp=pilos Hlo=anl, ) w218, 211, 3

1 1
The regularity of the triangulation enables us to bound h2h; <h,2 for all ECOK with
K eT,. Thus:
2

O,wE) HU'B”'tE”EHo,E'

1
=< h; ma — Gh|

1
Hnﬂthbz  to-al,, +lo-z

We conclude by using the equivalence (4.3).

0,E

Lemma 5.10. The following estimate holds:
hlloy+2pa’ p,5+ 200, 7, < hy (“O' =0y +lp=Pilly i+l =] )+ Jee =2, -

Proof. Recall that f =0 +2ua' po+2uwy =21Vu. Now we have:
1 2
B.bz| by 4.1

0.K

||0'h +2ua' p,o + Zya)h;(”iK =<
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=—[ b (B=B,): B +[ b B

K

==[ be(B=B,): B+ 20| b(Vu—u,)): Bdx

X
=—[ by (B=B,): Bidx=2u[ (u—u,)div(b, f,)dx
X K
=<[8=Buls Bl + 28l =], |diviBi B
= ”ﬂ - ﬂh ”o,K ”'Bh ||O,K + ”u - uh”O,K hlzl ”ﬂh ||0,K by (4.2)

<lo=cull +1p= il o=l A= 1B, -

In conclusion we have proved that:
hK ”O-h + 2ﬂa'ph5 + 2’ua)hZ||0,K = hK (“O- — 0, ||0,K + "p - ph”o,K + ”w -, ”0,1{ )+ ”u —U, ||0,1< :

||as(0'h )” ox appearing in the estimator 77, is easily estimated as aS(O'h ): —aS(O' -0, ), and the

proof of Theorem 5.6 results from this and the sequence of Lemmas 5.7-5.10.
6. Conclusions

A new a posteriori error estimator for a dual mixed finite element method of the elasticity
problem was introduced and analyzed. It was shown that this error estimator is reliable and
efficient. Moreover, the estimator justifies an adaptive finite element scheme which refines a given
grid only in regions where the error is relatively large. This method can treat natural boundary
conditions, i.e., conditions of traction on a portion of the boundary of the domain and therefore it
can be used for free boundary problems. On the other hand, the tensor of the constraints is naturally
used in the coupling equations of linear elasticity with other equations such as the technological
process of semiconductors. Therefore, this method would be best suited for this kind of problem.
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