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Abstract
I propose an affine model of short rates that incorporates a random walk with sto-
chastic drift. This framework enables my model to capture the behavior of monetary 
authorities in the short rate market, allowing for minor deviations while reacting 
strongly to deviations large enough to threaten production. Importantly, my model 
facilitates the derivation of closed-form bond prices, thereby providing an analytical 
solution for bond-option prices. I compare my model with nine standard short rate 
models found in the literature. Among these, five are single-factor models and four 
are multifactor models. Remarkably, my model outperforms all competing short rate 
models, including the constant elasticity of volatility, stochastic mean, and stochas-
tic volatility models. Moreover, it yields interest rate forecasts consistent with com-
mon term structure priors and surpasses the performance of the naive random walk 
model. Additionally, my stochastic mean model can explain the unspanned risks 
documented in the literature.

Keywords Short rates · Stochastic volatility · Continuous-time estimation · Option 
options

JEL Classification C15 · C32 · G12 · E43 · E47

1 Introduction

Monetary and financial stability (see Orphanides & Wilcox, 2002; Aksoy et  al., 
2006) have indicated that monetary policy is path-dependent. Path dependence for 
short rate models implies that if there is mean reversion, the short rates must revert 
to a nonstationary mean. Central banks research (see Orphanides & Wieland, 2000) 
also suggests that optimal monetary policy should deviate from standard linear 
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policies. For short rate models, this implies that short rates may follow a nonlin-
ear process. Both these results could result from an “opportunistic” monetary policy 
that adjusts expectations for past forecast errors yet actively counters adverse short 
rate shocks that are large enough to disrupt production. Empirical evidence supports 
this view of short rate behavior (see Akso, 2006).

Bauer and Rudebusch (2020) demonstrate that market data incorporates or 
reflects central bank policy towards inflation by modifying conditioning informa-
tion, the connection between the stochastic means of macroeconomic series and 
short rates. Balduzzi et al. (1998) take a conditional information approach to clarify-
ing the news content of shocks to bond yield by modifying conditioning informa-
tion. Thus, I should expect to see nonlinearity and nonstationary mean reversion in 
short rate data. These short rates follow a nonlinear process that reverts to a non-
stationary trend is consistent with recent empirical work by Fama (2006). Fama 
finds “…that mean reversion is toward a nonstationary long-term mean.” (p. 1). This 
result indicates that the shocks to short rates are permanent, implying that the mean 
is nonstationary. Fama also documents that the short rate behavior is mean revert-
ing to this nonstationary trend. This line of financial literature is independent of and 
consistent with that published in the monetary economics literature discussed above.

In this paper, Ipropose a short rate model that incorporates both the above fea-
tures. First, my proposed model allows for the very high persistence of interest rates 
resulting from inflation trends and equilibrium real interest rates. Scholars have doc-
umented that nominal interest rates encompass a slow-moving common trend com-
ponent (Campbell and Shiller, 1987). Al-Zoubi (2019) and Bauer and Rudebusch 
(2020) conclude that accounting for the trend in the short rate reduces forecast error. 
Duffee (2011) demonstrates that a random walk component is essential to explain 
the term structure and that incorporating a random walk component leads to bet-
ter predictability than existing term structure models. Duffee (2018) also extends 
the results and finds that variations in news reports concerning expected inflation 
explain about 10% to 20% of variances of yield shocks. Second, my model preserves 
the mean-reverting characteristic empirically documented and suggested by oppor-
tunistic monetary policy. Yield curves do not explain Time-varying bond risk premi-
ums; this is also true for excess returns (see Cochrane and Piazzesi, 2005). Predic-
tors of excess bond returns include; expected inflation (see Cieslak & Povala, 2015), 
measures of Treasury bond supply (see Greenwood & Vayanos, 2014), the output 
gap (see Cooper & Priestley, 2009), and macroeconomic fundamentals (see Joslin 
et al., 2014). On the other hand, Duffee (2018) reports that expected inflation shocks 
explain a substantial portion (up to 20%) of bond yield variance.1

1 Liu (2018) provides Out-of-sample evidence of predictability of excess returns for economic growth 
and inflation. However, Bauer and Hamilton (2017) conclude that this predictability is possibly spurious 
due to size distortions resulting from persistent regressors and independent variables that are not strictly 
exogenous. Ang et al. (2008) develop a term structure model with a time‐varying risk premium. They 
find that the inflation risk premium explains the upward sloping nominal term structure. Bekaert et al. 
(2010) also document persistent interest rates where the inflation target is time varying. Duffee (2002) 
finds that forecasts from a random walk model outperform the Dai and Singleton (2000) affine model.
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My model’s contribution is to capture the permanent component of short rates, 
i.e., I model the nonstationary stochastic mean of the short rate as a random walk 
(with and without drift).2 However, current stochastic mean models of the term 
structure of interest rates generally assume that the stochastic mean has reverted to 
this point (See Balduzzi et  al., 1998). My model is in line with the motivation in 
Fama (2006) and Bauer and Rudebusch (2020) by assuming time-varying long-run 
stochastic mean. There are two important features of my model that inspire its rela-
tive success in simultaneously pricing bonds and bond options. First, I emphasize 
members of the affine family of short rate models that are encompassed by Duffie 
and Kan (1996). The second feature of my model is the dependence of the market 
price of risk on the state of the macroeconomy. My proposed time-varying stochas-
tic mean can capture the premium associated with expected inflation (see Cieslak 
& Povala, 2015) and the output gap (see Cooper & Priestley, 2009). This extended 
specification allows for time-variation in the premium associated with unspanned 
risks, an element that found to be critical for matching bond and options returns (see 
Baksh et al., 2023a, b). I refer to my model parameterization as the nonstationary 
mean model (NSM).

Besides model development, this paper makes several other contributions to the 
literature. First, my model captures both nonlinearity (because the random walk cre-
ates nonlinear drift) and non-stationarity because my mean is stochastic and non-
mean reverting to permanent shocks. Second, my model has better in-sample and 
out-of-sample forecasts than the benchmark models (random walk, single-and multi-
factor models). Third, my closed-form solutions for bond and bond option prices 
exhibit less bias and attenuates the downward bias documented in bond option prices 
(see Phillips & Yu, 2005; Tang & Chen, 2009). I conclude that the downward bias 
in current bond option pricing models is due to the short rate mean non-stationarity.

My main finding is that my NSM model, better captures short rate dynamics by 
incorporating a random walk mean. My findings differ from Durham (2003) and 
Chan et al. (1992), who find that constant elasticity of volatility (CEV) models are 
superior in modeling the behavior of short rates. I find that CEV models outperform 
by capturing the nonstationary mean during unstable periods. This advantage does 
not exist, when compared against my proposed nonstationary mean model, and my 
model outperforms the CEV-based models. I also find that my proposed model out-
performs stochastic mean and volatility models.

Interestingly, in-sample and out-of-sample results show that my model outper-
forms the Chen (1996) three-factor model. Also, as the literature predicts, it is sur-
prisingly hard to consistently beat the naive random walk prediction, which predicts 
that the short rate has a martingale behavior. Nevertheless, I note that the forecasts 
implied by my model are significantly more accurate than the naive random walk 
model.

Additionally, using my model, I derive closed-form solutions for both bond and 
bond-option securities. Closed-form solutions provide several benefits, includ-
ing: (i) allowing for consistent estimation and (ii) allows a full description for bond 

2 Balduzzi et al. (1998) assume a stochastic mean. However, their stochastic mean is mean-reverting. My 
contribution is that I introduced a model with a random walk stochastic mean.
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and option prices over each maturity level without approximation error. I utilize 
my model to investigate estimation bias in bond and option prices. As a preview of 
my results, I outline three main findings. First, my model reduces the bias in terms 
of mean, and reduces standard deviation resulting in a substantial overall gain in 
RMSE. Second, I relate my findings to the results of Phillips and Yu (2005) and 
Tang and Chen (2009). If the random walk component is the primary source of 
misspecification bias, one would expect higher option prices for the NSM model. I 
find that the NSM model increases the implied option prices by 0.036–9.4% for in-
the-money options and by 68% for at-the-money options. Third, the transmission of 
these biases onto money markets exhibits considerable time variation. Results show 
a greater bias in estimating bond and option prices with higher interest rates. Lower 
liquidity  properties  such as time deposits, commercial paper, and treasuries. Fur-
thermore, bias in the stochastic mean is more considerable when interest rates are 
volatile.

I further contribute to the literature on the relation between the transitory and 
permanent components of the short rate. I do this by considering two different trend 
filtering methods to produce the random walk component. The first method assumes 
that the permanent component follows a random walk with drift correlated with the 
stationary component. Intuitively, the stochastic mean depends on the volatility of 
the short rate. The second type of method assumes that the permanent component is 
a driftless random walk which is independent from the resulting cyclical component. 
In this regard, I used three methods. The first is based on the filtering technique 
introduced in Hodrick and Prescott (1997) and developed in Ravn and Uhlig (2002). 
The second method is that suggested by Hamilton (2018). The third, is the boosted 
HP (bHP) method suggested by Phillips and Shi (2021).

The remainder of the paper is structured as follows. Section 2 develops the model 
and derives closed-form solutions for bond prices. Section 3 develops the estima-
tion techniques. Sections 4 and 5 review the benchmark models and describes the 
data, respectively. Empirical results are presented in Sect. 6, while Sect. 7 estimates 
resulting Bond and option prices. Section 8 offers conclusions.

2  Model setup

In this section I derive analytic representations for the short rate and bond price. 
In the model, the short rate has a Gaussian random walk component. I refer to my 
model as the NSM model.

2.1  Short rate with a random walk

Assumption 2.1 As in Duffie and Kan (1996), risk is produced by n independent 
Brownian motions. The instantaneous short rate, ṙt, is affine in the state:

ṙt = 𝜕0 + 𝜕1rt
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The risk-neutral continuous-time analogue of the short rate,  rt, and the Gaussian 
random walk component, µt, can be written as

where Zt and Wt are two independent Brownian motions and �t is a white noise 
uncorrelated with the stationary component of short rate ct = rt − �t . The corre-
sponding risk-neutral measure determines bond price.

The specification in (1) implies the following limiting distributions of the short 
rate.

Proposition 2.1 Let Assumption 2.1holds. Then the expected value of the short rate 
is given by.

Proof See Appendix 1.  ◻

Proposition 2.2 Let Assumption 2.1 holds. Then the variance of the short rate is 
given by.

where �2
c
 and �2

�
    are the variances of the stationary and permanent components, 

respectively.

Proof See Appendix 1.  ◻

Note that the variance of the short rate of my model can be written as:

where �2
VAS

 is the variance of the short rate under the Vasicek (1977) model.

2.2  Bond price with a random walk

The derivation details of the bond pricing formula are contained in Appendix 1. 
In this section, I only show the main results.

(1)drt = −�1(�t − rt) + �dZt and d�t = ��dWt = �t.

E

[
−

T∫
t

rudu

]
=

rt − �t

�1

(
1 − e�1(T−t)

)
− �t(T − t).

Var

[
−

T∫
t

rudu

]
= Var

[
T∫
t

(cu + �u)du

]

=
�2

c

2�3
1

(
2�1(T − t) + 3 − 4e�1(T−t) + e2�1(T−t)

)
+ �2

�

(T − t)3

6
.

= �2
VAS

+ �2
�

(T − t)3

6
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Theorem 2.1 Let the expected value and variance of the short rate as in Proposi-
tions 2.1 and  2.2. Define the price of a zero-coupon bond with maturity T at time t,P 
(t, T), as.

where 
{

Ft

}
 is standard filtration.

by the results from Propositions 2.1. and 2.2. I get

where

and.

D(t, T) =
(

q�2(T−t)3

12(1+q)

)
.

where q is the signal-to-noise ratio defined as

Proof See Appendices 1 and 2.  ◻

Remark 2.1 In the case that the stochastic mean, µt, is a target that the Federal 
reserve wants the rate to converge to, then µt depends on the current interest rate 
environment, i.e. whether it is volatile or not. Hence, I also build a correlation 
between the driving Brownian motions shown in Assumption 2.2 below.

Assumption 2.2 The continuous-time analogue of the short rate, rt, and the Gauss-
ian random walk component, µt, can be written as.

.

P(t, T) = E

[
exp

(
−

T∫
t

rudu

)
|Ft

]
= E

[
exp

(
−

T∫
t

rudu

)
|rt

]

P
(
t, T , rt

)
= Exp

([
−

T∫
t

ru

(
rt

)
du

]
+

1

2
Var

[
−

T∫
t

ru

(
rt

)
du

])

= Exp
(
A(t, T)rt − �t(A(t, T) + (T − t)) + B(t, T) + D(t, T)

)

A(t, T) =

(
1 − e�1(T−t)

−�1

)

B(t, T) =
(A(t, T) + (T − t))

2�2
1

+
A(t, T)2

4�
1

[
�2

(1 + q)

]

q =
�2

d�

�2
c

=
�2
�

�2
c

=
�2
�

�2
c

.

drt = −�1(�t − rt) + �dZt and d�t = ��dWt=�t.
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I now assume that Zt and Wt are correlated, such that dZtdWt = �dt , where the 
correlation, ρ, is some constant. Thus �t is a white noise correlated with the sta-
tionary component of short rate ct = rt − �t.

The corresponding bond price is given by

Where

and

Proof See Appendix 1.  ◻

2.3  Term structure with a random walk

From proposition (2.2), the zero rate at time t  for period T − t is

In my model, one needs to specify only the parameters of the model and the per-
manent component of the short rate to determine the entire term structure at time t . 
The zero rate R(t, T) is linearly dependent on both  rt and �t . This implies that rt and 
�t determine the level of the term structure at time t. The shape of the term structure 
depends solely on T .

2.4  Nonstationary stochastic mean as a proxy for unspanned risks

The consensus in literature is that the spanning hypothesis, the yield curve contains 
all information relevant for predicting future bond returns, can be rejected by the 
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(
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)
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)
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observed data (see, for example, Bakshi et al. (2023a, b).3 The evidence comes from 
predictive regressions for bond yields on several macroeconomic factors, controlling 
for the level, slope, and curvature of the yield curve. The most important factors 
that have been found to help predict bond returns in such regressions are trends in 
inflation (Cieslak & Povala, 2015), the output gap (Cooper & Priestley, 2009), and 
economic growth and inflation (Joslin et al., 2014). In this section I provide the link 
between these macroeconomic factors and my proposed stochastic mean.

Remark 2.2 In the case that the Federal reserve follows Taylor’s rule, then the sto-
chastic mean, µt, is the natural rate of interest that contains information about the 
output gap and the inflation gap. Accordingly, the permanent components of infla-
tion and output can be explained by the stochastic mean.

Following Taylor (1993) the deviations of the short rate from the desired nominal 
policy rate, �t , are proportional to deviations of a target variables Zt , from its target 
Z∗

t
.

Among the alternative target variables suggested, Taylor (1993) examined two as 
more likely to result in better economic conditions. These two factors are the infla-
tion gap, 

(
�t − �∗

t

)
, studied by Cieslak & Povala (2015) and the output gap, 

(
yt − y∗

t

)
 

studied by Cooper and Priestley (2009). The variation of the short rate from its base-
line path can be written as:

In my model, the transitory component of short rate, ct = rt − �t , captures these 
two unspanned factors as the permanent component captures trends in inflation, �∗

t
 , 

and potential output, y∗
t
.

3  Model estimation

As in Fama (2006) I assume the level of short rates is mean reverting to its long-
term conditional mean. I also assume that this long-term conditional mean is subject 
to permanent shocks. Thus, I decompose the short rate process, rt, into its two con-
stituent parts: (i) a random walk stochastic mean (µt) and (ii) a transitory component 
with zero mean (ct):

rr − 𝜇t = + �́(Zt − Z∗
t
)

rr − 𝜇t = + �́ 𝜋

(
𝜋t − 𝜋*

t

)
+ �́ y

(
yt − y*

t

)

rt = ct + �t

3 Bakshi, Gao, and Xue (2023) use of options on the 10- and 30-year Treasury bond to estimate the 
expected return of bond futures. These measures exhibit forecasting ability for future returns, surpassing 
the predictive power of the level, slope, and curvature variables typically derived from the yield curve.
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I consider two different trend filtering methods to produce the random walk 
component that is consistent with Assumptions 2.1 and 2.2. The first method is the 
Beveridge and Nelson (1981) decomposition which assumes that the permanent 
component follows a random walk with drift, and it is correlated with the station-
ary component. Intuitively, the stochastic mean is depending on the volatility of the 
short rate (Assumption 2.2). The second group of methods assume that the perma-
nent component is driftless random walk which is independent from the resulting 
cyclical component (Assumption 2.1). In this regard, I used three techniques, the 
first is based on the filtering technique introduced in Hodrick and Prescott (1997) 
and developed in Ravn and Uhlig (2002). The second method of trend filtering 
method used is suggested in Hamilton (2018). He argues that the HP filter generates 
spurious dynamics, is two-sided and its application does not fit with random walk. 
The third method is the boosted HP (bHP) method suggested in Phillips and Shi 
(2021). The proposed method delivers consistent estimation of stochastic trends that 
involve unit root processes and shows better characteristics than the autoregression 
method of Hamilton.

3.1  Case 1: correlated permanent and transitory components

3.1.1  Beveridge and Nelson (BN) decomposition

I define the random walk with drift component of BN decomposition as

where Tx = E
(
Δrt

)
 is the deterministic drift and Ωt is the information set.

Empirically, the permanent component is often calculated using an Autoregres-
sive integrated moving average (ARIMA) model that is designed to capture the 
autocovariance structure of the short rate. The state space representation for the 
short rate is given by:

I follow the approach in Anderson et al. (2006) and write the serially uncorrelated 
innovation of the transitory component as

�t = lim
M→∞

E
[
rt+M−MTx∕Ωt

]

rt = ct + �t

�t+1 = Λ + �t + �t,�t ∼ NID
(

0, �2
�

)

ct+1 = �ct +

p∑
j=1

�jct−j + vt+1, �t ∼ NID
(
0, �2

�

)

Corr
(
�t, �t

)
= ���
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where b is a parameter that lets permanent and transitory innovations to have dif-
ferent signs and variances even though being driven by identical underlying shock. 
Note that this representation implies that the permanent and transitory innovations 
are observable and can be measured using the forecast error from the reduced-form 
ARIMA representation for rt . This framework uses perfect correlation between per-
manent and transitory components which implies that shocks to short rate will affect 
both components as suggested in Assumption 2.2. Stock and Watson (1988) point 
out that policy makers need to recognize the substantial trend component, even if 
they are principally interested in short term fluctuations. Empirically, the short-term 
fluctuations in the transitory component of the short rate are almost insignificant, 
and its serial dependence properties are usually very weak.

3.2  Case 2: uncorrelated permanent and transitory components

3.2.1  HP decomposition

As in Fama (2006) I assume the level of short rates is mean reverting to its long-
term conditional mean. I also assume that this long-term conditional mean is subject 
to permanent shocks. Thus, I decompose the short rate process, rt, into its two con-
stituent parts: (i) a random walk stochastic mean (µt) and (ii) a transitory component 
with zero mean (ct):

I specify the random walk component, µt, by minimizing the loss function as in 
Hodrick and Prescott (1997) and Ravn and Uhlig (2002):

Let L be the lag operator, which implies that ∇ = 1 − L, the second difference lag 
operator. T is the sample size and q is the signal-to-noise ratio. I follow Ravn and 
Uhlig (2002) and chose q = 43, 200 for monthly data. The loss function in Eq. (2) 
imposes two penalties. First, mean reversion of the expected return on bonds is 
penalized via the first term, while the variability in the mean, which is in part due 
to the Federal Reserve actions to control money supply, is penalized by the second 
term.

The minimization problem in Eq. (2) possesses a unique solution. The first order 
condition for µt is:

which simplifies to:

�t = b�t,

rt = ct + �t

(2)
∑T

t=1

[
rt − �t

]2
+ q

∑T

t=2

[
∇2�t

]2
,

−2(rt − �t) − 4
(�t+1 − 2�t + �t−1)

q
+ 2

(�t − 2�t−1 + �t−2)

q
+ 2

(�t+2 − 2�t+1 + �t)

q
= 0
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The above equation allows us to estimate µt (and, in turn, ct) using the short rate 
series rt, subject to stipulating q, I describe the choice of q at the end of the section.

The discrete-time analogue of the short rate in my model can be written as

where NID(0, σ2) denotes normally and independently distributed with mean zero 
and variance σ2.

My analysis with a nonstationary mean can be motivated by the work of de 
Jong and Sakarya (2016). They analyze the decomposition in my framework and 
show that the transitory component follows weak dependence properties when the 
procedure is applied to a stationary mixing process with a random walk. Accord-
ingly, suppose that the short rate is a stationary mixing stochastic process with 
a random walk. The resulting transitory component from Eq.  (3), ct, possesses 
weak dependence properties with mean zero. Thus, ct is an AR(p) process:

with

The error terms νt+1 and ηt+1 are mutually independent, hence:

Subtracting rt from both sides of Eq. (2) after taking one period ahead versions 
and substituting for the Eqs. (4b) and (4c), I get:

Defining �1 = ρ − 1, I have:

(3)rt =

(
1

q

(
1 − L−1

)2
(1 − L)2 + 1

)
�t.

(4a)rt+1 − rt = �1

(
rt − �t

)
+ �t+1

Δ�t+1 = �t+1 ∼ NID
(

0, �2
�

)

�t+1 ∼ NID(0, �2)

(4b)ct+1 = �ct +

p∑
j=1

�jct−j + vt+1, �t ∼ NID
(
0, �2

�

)

(4c)Δ�t+1 = �t+1 ∼ NID
(

0, �2
�

)

E
(
vt�s

)
= 0, ∀t, s,

rt+1 − rt = �t+1 − �t + (� − 1)ct +

p∑
j=1

�jct−j + �t+1,

(5a)rt+1 − rt = �1ct +

p∑
j=1

�jct−j + �t+1
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where εt+1 = ηt+1 + νt+1 such that εt+1 ∼ NID(0,σ2). Equation  (5b) follows from 
Eq. (5a).

is weakly dependent under general conditions of the lag polynomials given by 
Eq. (5a) and Eq. (5b). Note that Eq. (5b) can be written as:

Since Eq.  (6) is identical to Eq. 1 in Phillips (1987) andu satisfies Assumption 
2.1 in Phillips (1987), my estimation of the model parameter is consistent even with 
error terms that exhibit serial correlation and heteroskedasticity (see Phillips, 1987, 
Theorem 3.1). Since the parameter estimate of Eq.  (5b) is consistent, Phillips and 
Perron (1988) suggest the Parzen estimator of Gallant (1987) as a consistent esti-
mate for parameter variance.

Define q, a smoothing constant to estimate Eq. (3), to be the variance ratio of ηt+1 
and ct+1. I derive the expression for q in Appendix 2. Thus, q can be written as:

3.2.2  Hamilton decomposition (Hamilton, 2018)

I replicate each estimation but using the filtering approach suggested in Hamilton 
(2018). Specifically, the random walk component is approximated by estimating 
Eq. (4a) as

where

and

Hamilton (2018, proposition 4) demonstrates that the series  ct = rt − �t is sta-
tionary given that fourth differences of the series rt+1 are stationary. Hamilton 
method has several advantages over HP filter. First, ct is a one-sided filter. It is often 
criticized that the stationary component resulting from filter is HP is two sided-filter. 
Second, ct resulting from Hamilton method is uncorrelated with the lagged values 
Hamilton (2018, footnote 17). Third, the estimated value of ct is model-free as the 
long as the fourth differences of the process rt+1  are covariance stationary.

(5b)rt+1 − rt = �1

(
rt − �t

)
+ �t

�t+1 =
∑p

j=1
�jct−j + �t+1

(6)rt+1 = �rt + ut+1

q = �2
�
∕�2

v
= �2

�
∕
(

1 − �2 −
∑p

j=1
�2

j

)
�2

c
.

rt+1 − rt = �1

(
rt − �t

)
+ �t+1

�t = b0 + b1rt−7 + b2rt−8 + b3rt−9 + b4rt−10

ct = rt − �t.
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3.2.3  Boosted HP (bHP) decomposition (Phillips & Shi, 2021)

Phillips and Shi (2021) propose a solution to establish consistent estimation of sto-
chastic trends that involve unit root processes. If the transitory component ct still 
displays trending behavior after HP filtering, they suggest applying the HP filter to 
ct to remove the residue trend residual. After m fitting, the transitory component can 
be written as

where m is the number of iterations performed. I follow Phillips and Shi (2021) and 
used the Bayesian Information Criterion (BIC) as a terminating criterion to stop the 
iteration.

Phillips and Shi (2021) show that the bHP filter consistently estimates the 
stochastic trend. This result delivers two advantages: First, it indicates that the 
Cogley and Nason (1995) critique of the possible presence of spurious cycles no 
longer holds (see Phillips and Sainan, 2021) for further discussion). Second, the 
boosting procedure is valid and appropriate when applied to a random walk, as it 
can accelerate the convergence to the actual trend. Phillips and Shi (2021) also 
show that the bHP filter numerically and empirically outperforms Hamilton’s 
(2018) autoregressive filter.  

3.3  Measurement error

Cochrane and Piazzesi (2009, pp.14 find that the better performance of the mov-
ing of the forward rate is attributable to IID measurement errors. Cochrane and 
Piazzesi (2005) argue that:

Since bond prices are time-t  expectations of future nominal discount fac-
tors, it is very difficult for any economic model of correctly measured bond 
prices to produce dynamics in which lagged yields help to forecast anything. 
If, however, the risk premium moves slowly over time but there is measure-
ment error, moving averages will improve the signal to noise ratio on the 
right-hand side.

Note that the error term �t+1 =
∑p

j=1
�jct−j + vt+1 + �t+1  resulting from the HP, 

bHP, and BN filters is serially correlated. Estimating (5b) directly results in meas-
urement error. For example, the transitory component of the HP filter is weakly 
dependent stochastic process (de Jong & Sakarya, 2016) and it is an ARMA pro-
cess in the case of BN filter. Note that, However, that the transitory component of 
Hamilton’s filter is unpredictable (See Hamilton, 2018, footnote 17).

I propose a version of Eq. (5b) with White noise errors. The idea stems from 
the following system derived from Eq. (4b) and Eq. (5a):

c(m) =
(
In − S

)
c(m−1) =

(
In − S

)
x

f (m) = x − c(m)
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It follows that

and the variance follows immediately

Because �2
c
=

�2
v

1−�2−
∑p

j=1
�2

j

 I obtain,

Defining Ω = 1 − �2 and � = −
∑p

j=1
�2

j
 we can write,

which can be written as,

Because q =
�2
�

�2
v

 we obtain,

Plug this in (7) we get,

Because Ω = 1 − �2 and � = � − 1, we can write: Ω = �1
2 − 2�1 , then we have,

I derive the expression for q in Appendix 3.
I estimate my model as

∑p

j=1
�jct−j + vt+1 = ct+1 − �ct

�t+1 =
∑p

j=1
�jct−j + vt+1 + �t+1.

�t+1 = ct+1 − �ct + �t+1

�2
�
=
(
1 − �2

)
�2

c
+ �2

�
.

�2
�
=

�
1 − �2

�
�

1 − �2 −
∑p

j=1
�2

j

��2
v
+ �2

�
.

�2
�
=

Ω

Ω + �
�2

v
+ �2

�
,

(7)�2
�
= −

�

Ω + �
�2

v
+ �2,

�2
v
=

(
1

1 + q

)
�2.

�2
�
=

(
1 −

�

(Ω + �)(1 + q)

)
�2.

(8)�2 =

⎛⎜⎜⎝

�
�1

2 − 2�1

�
+

q

(1+q)
�

�
� + �1

2 − 2�1

�
⎞⎟⎟⎠
�2
�
.

(9)rt+1 − rt = �1

(
rt − �t

)
+ �t+1
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If the HP and bHP filters are used.
Also, I estimate the model as

if the BN filter is used.
Note that the parameter φ captures the AR terms in the transitory component 

equation regardless the number of lags. By Eq. (8) the coefficients relating the sto-
chastic mean of the model depends on the parameter � =

∑p

j=1
�2

j
 which, in turn, 

describes the sensitivity of the estimated parameters to the serial correlations in the 
transitory component. I use Eq. (8) for reasons of measurement errors.

I compute the nonstationary mean of HP and bHP by choosing the smoothing 
constant q such that 1/q = 43, 200. This is equivalent to the Ravn and Uhlig (2002) 
adjustments of the third power of the frequency of observations.4

I estimate my model using the GMM developed in  Chapman and Pearson 
(2000) and Chan et al. (1992). Details for the GMM estimations used in this paper 
appear in Appendix 4. I show that my main results are robust to using the four meth-
ods. However, using the BN and bHP methods lead to additional impressive gains in 
the in- and out-of-sample forecasting power. 

4  Benchmark models

4.1  Single‑factor models

To calibrate and measure the success of my model, I compare it with five alternative 
single-factor models and three multifactor models of the short rate family. The equa-
tion for the single-factor short rate

where rt is the short rate; Zt is a standard Brownian motion; αi for i = 0 to 3 are 
parameters that capture the drift of the process; and σ and γ are parameters that cap-
ture the volatility of the process, which may depend on the short rate (captured by 
γ). Each single-factor model studied in this paper can be represented by Eq.  (10) 
by incorporating constraints on the parameters α, σ, and γ. The single factor mod-
els I benchmark against include: the VAS model (Vasicek, 1977), the CIR model 
(Cox et al., 1985), the CKLS model (Chan et al., 1992), the AG model (Ahn & Gao, 

E
�
�t+1

�
= 0 and �2

�
=

⎛
⎜⎜⎝

�
�2

1
− 2�1

�
+

q

(1+q)
�

�
� + �2

1
− 2�1

�
⎞
⎟⎟⎠
�2

E
[
�t+1

]
= 0 and �2

�
=

(
1 −

�(
� + �2

1
− 2�1

)x

)
�2, where x =

�2
v

�2

(10)drt =
(
�0 + �1rt + �2r2

t
+ �3r−1

t

)
dt + �r

�
t dZt

4 Ravn and Uhlig (2002) point out, the standard constant for monthly data is 1/129,600 or 1/43,200 
when the fourth and third power of the number of months in a quarter are used, respectively.
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1999), and the CP model (Chapman & Pearson, 2000). Table1 summarizes the vari-
ous benchmark single-factor models used in this paper.

The above models have the following properties. Single-factor models like VAS, 
CIR, CP, AG, and CKLS assume a stationary short rate. The CKLS (heteroscedas-
tic) model outperforms the VAS, CIR, CP, and AG models, however, CKLS does 
not use a stochastic process that allows for the derivation of closed-form bond 
prices. The conclusion of CKLS is that volatility is more important than the drift in 
capturing short rates.

4.2  Multifactor models

In addition to single factor models, I also compare my model to three multifactor 
models, including.

1) The two factor stochastic mean model (BDF) of Balduzzi et al. (1998) is given 
by:

where rt is the short rate, �t is the stochastic mean, and Z is a standard Brown-
ian motion. In turn, �t evolves over time according to the stochastic differential 
equation

where Zt , Wt are two independent Brownian motions. The stochastic mean  �t can 
be proxied by:

where

and

where y
(
T1

)
 and y

(
T2

)
 are two bond yields of maturities T1 and T1 . I follow Bal-

duzzi et al. (1998) and consider two cases. Both cases result from specific param-
eter choices; first by setting �1 = 0 I get the stochastic mean Vasicek model and 
second by setting �0 = 0 I get the stochastic mean CIR model.
2) Heston (1993) defines a two-factor stochastic volatility model as:

drt = �1

�
rt − �t

�
dt +

√
�0 + �1rtdZt

d�t =
�
��0 + ��1�t

�
dt +

√
s0 + s1�tdWt

�t = ��0 + ��1

[
B
(
T2

)
T1y

(
T2

)
− B

(
T1

)
T2y

(
T1

)]

B(T) =
2
(
e�T − 1

)

(� + k)
(
e�T − 1

)
+ 2�

� =

√(
�2

1
+ �2

1

)

drt =
�
�0 + �1rt

�
dt +

√
VtdZt
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where the interest rate has mean reversion speed of mean �1 and the mean rever-
sion speed of the variance �v1 . To avoid nonstationarity, both these parameters are 
required to be positive. The mean of the variance is given by �v0  and the volatil-
ity of the variance is given by �v1 . As is standard, both Zt and Wt represent scalar 
Brownian motions over a probability measure.  Zt and Wt are allowed to be cor-
related. The SV model is explored further by Chen (1996), Andersen, and Lund 
(1997) and Ait-Sahalia and Kimmel (2007).
3) Chen (1996) three-factor Model (CHEN) is given by:

where the stochastic volatility of the short rate is represented by vt and the sto-
chastic mean of the short rate is represented by �t . Zt , Wt , and Xt are independent 
Brownian motions. The Chen (1996) model I implement is further explored in 
Dai and Singleton (2000).
4) Al-Zoubi (2019) two factor integrated random walk I(2) model is given by

where the stochastic mean is the result of an integrated random walk I(2) process. 
The Al Zoubi (2019)  model maintains resilience as it assumes that older shocks 
induce a stronger effect than newer shocks.

5  Data

I use three-month Treasury bill rates and bond yields for 1- and 2- year maturi-
ties collected from the Federal Reserve Economic Database (FRED). Chicago 
Fed National Activity Index, industrial production index, and of inflation 
(1-year CPI inflation expectations) from the FRED available from the Federal 
Reserve Bank of St. Louis website. I also use discount-bond prices to compute 
continuously compounded yields for 1- and 2-year maturities. The discount-
bond prices used to compute the continuously compounded yields for the 1-, 
2- and 3-year maturities are from the Center for Research in Security Prices 
(CRSP) FAMABLIS file. I collect data from July 1952 through December 2018 

dVt =
�
�v0 + �v1vt

�
dt + �v

√
VtdWt

drt = �1

�
rt − �t

�
dt +

√
VtdZt

dVt =
�
�v0 + �v1vt

�
dt + �v

√
VtdWt

d�t =
�
��0 + ��1�t

�
dt + ��

√
�tdXt

drt = �1

(
rt − �t

)
dt + �dZt

d�t = �tdt,d�t = ��dWt
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for the interest rates and from January 1982 to December 2023 for the uns-
panned risk factors.

Table 2, Panel A provides the following summary statistics: number of observa-
tions (N), mean, standard deviations (Std Dev), and the first five lagged autocorrela-
tions (ρi,i = 1 to 5) for both the yield and the changes in the yield. The mean of the 
short-term riskless rate over the period is 3.49% with a standard deviation of 3.17%. 
For the change in yield, the corresponding numbers are a mean of 0.00% with a 
standard deviation of 0.36%. Correlation factors for the yield rate are close to 1, 
while those for changes in yield are small, with the exception of the first lag which 
is 33.61%.

The Augmented Dickey-Fuller (ADF) test in Dickey and Fuller (1979) and the 
Augmented Weighted Symmetric (WS) test in Pantula et al. (1994) are provided in 
Table 2 Panel B.5 Both the ADF and WS tests do not reject the null of a unit root as 
p-values are above the 5% significance level.6 Both the ADF and WS test suggest the 
short rate is persistent.7

Figures 1, 2, and 3 plot the short rate, its nonstationary mean, and its stationary 
component using the BN, HP, bHP and Hamilton procedures, respectively.8

6  Empirical results

6.1  In‑sample forecast comparison

This section provides parameter estimates for the benchmark models and for my 
nonstationary stochastic mean (NSM) model. I use methods developed in Hodrick 
and Prescott (1997), Beveridge and Nelson (1981), Phillips and Shi (2021), and 
Hamilton (2018) to locate the nonstationary means. These methodologies are 
described in Sect.  3. I estimate models using GMM technique of Hansen (1982). 
The orthogonality conditions for the CP and AG models are defined according to 
Chapman and Pearson (2000), and I follow Chan et al. (1992) to define the orthogo-
nality conditions for the Vasicek, CIR, and CKLS models. I also follow Cai and 
Swanson (2011) to define the orthogonality conditions of BDF, Heston, and CHEN 
models. Appendix  4 provides details concerning the relevant moment conditions. 

8 I implement the one-sided Hodrick–Prescott filter introduced by Mehra (2004) to calculate the non-
stationary mean. I employ a smoothing constant of 1/q = 43,200 for both the HP and bHP filters, this 
smoothing constant corresponds to the Ravn and Uhlig (2002) adjustments of the third power for the 
frequency of observations.

6 Several papers find the nominal short rate follows a unit root process (See Perron (1989), Aït-
Sahalia(1996a), and Bandi (2002)). However, Bierens (1997) and Al-Zoubi (2009) propose this conclu-
sion is possibly flawed for two reasons: First, negative values should be realizable in a random walk with 
no drift; Second, given a positive drift a random walk would converge to infinity. Observed short rates do 
not exhibit these characteristics.
7 See Perron (1989).

5 I compute the asymptotic p-values for ADF and WS via the MacKinnon (1994) approximation. These 
p-values are robust to size distortion. Results are provided for the null of driftless unit root; qualitatively 
similar results are obtained under the null of unit root with drift.



 H. A. Al-Zoubi 

1 3

The general GMM approach employed in this paper is explained in detail by Chan 
et al. (1992) and Cai and Swanson (2011).

I compare the in-sample and out-of-sample performance of the nine models with 
each other and with the stochastic mean NSM model. I also compare the perfor-
mance of the models with the naive random walk model. To evaluate the in-sample 
forecast performance of each model I define the following goodness-of-fit measures 
based on the Bergstrom (1986, 1989) generalized discrete form:

Table 2  Treasury bill and bond summary statistics and nonstationary tests

Panel (A) provides summary statistics for the 3-month T-bill rate and 1- and 2- year bond yields, using 
the entire sample period from July 1952 through December 2018. There are 797 annualized monthly 
observations. I report the number of observations (N), the mean, and the standard deviation (Std Dev). In 
addition, I report monthly autocorrelation coefficients ρj for j = 1 to 5 that denote the autocorrelation at 
lag j of the short rate in levels and first differences.
Panel (B) provides the results of random walk tests applied to the 3-month T-bill rate, 1- and 2- year 
bonds yields inspected in this study. The two tests: (1) the Augmented Dickey-Fuller test (ADF) in 
Dickey and Fuller (1979) and (2) the Augmented Weighted Symmetric test (WS) in Pantula et al. (1994). 
For the ADF test, I consider the ratio �̂�∕S�̂� from the estimated model 
Δrt+1 = a + �rt +

∑n

i=1
�iΔrt + ut+1 , where S�̂�  is the standard error of the parameter estimate �̂� . I use the 

Akaike information criterion (AIC) is used to determine the optimal lag length n. The test statistic (WS) 
is given by �̂�WS =

∑n

t=2
rtrt+1∑n−1

t=2
r2

t+1
+n−1

∑n

t=1
r2

t+1

 . I reject the null hypothesis of a unit root if the p-value is below a 

relevant significance level. p-values for the relevant statistics are computed using the approximation of 
MacKinnon (1994) on the basis of a regression surface. I report simulated p-values based on 1,000 repli-
cations drawn from a normal distribution with zero mean and OLS squared residual variances, i.e., I use 
the Wild bootstrap

Variables N Mean St Dev ρ1 ρ2 ρ3 ρ4 ρ5

Panel A: descriptive statistics
rt 799 0.0417 0.0293 0.9919 0.9781 0.9652 0.9535 0.9419
rt + 1 − rt 798 0.0000 0.0037 0.3446 − 0.0594 − 0.0667 − 0.0099 0.0348
r1,t 799 0.0457 0.0301 0.9908 0.9791 0.9683 0.9584 0.9499
r1,t + 1 − r1,t 798 0.0000 0.0041 0.1342 − 0.0520 − 0.0440 − 0.0872 0.0797
r2,t 799 0.0476 0.0296 0.9925 0.9825 0.9733 0.9651 0.9579
r2,t + 1 − r2,t 798 0.0000 0.0036 0.1606 − 0.0551 − 0.0623 − 0.0701 0.0388

WS (p-value) ADF (p-value)

Panel B: nonstationary tests-constant in the fitted regression
rt − 2.4653 (0.3147) − 2.7989 (0. 1973)
r1,t − 2.2363 (0.4764) − 2.4560 (0. 3503)
r2,t − 2.0035 (0.6461) − 2.0035 (0. 4585)
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where n is the forecast period, and the forecast value of r is given by rˆt. The root-
mean-square error, mean absolute error, and mean percentage error are provided by 
RMSE, MAE, and MPE, respectively.

Because of the persistence of the short rate (Duffee, 2013), the naive random 
walk model found to outperform most models when forecasting short rates. To 

RMSE =

√√√√1

n

n∑
t=1

(
r − r̂

)2

MAE =
1

n

n∑
t=1

|r− r̂||

MPE =
1

n

n∑
t=1

r − r̂

r

Fig. 1  Interest rates from July 1952 through December 2018. This figure compares the short rate time 
series to the one-year and two-year bond rates. The Federal Reserve Bank of St. Louis three-month sec-
ondary market T-bill rate is used for the short rate. The FAMABLIS file from the Center for Research 
in Security Prices (CRSP) tape is used for one- and two-year bond rates. The sample is from July 1952 
through December 2018 (i.e., 797 annualized monthly observations)
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evaluate the forecast performance of each model against the naive model I use the 
following statistic developed by Theil (1958)

I use three criteria to measure in-sample fit of each model: the GMM overi-
dentifying test used in Chan et al. (1992), the RMSE, MAE, and MPE statistics of 
Bergstrom (1986, 1989), and the Theil’s U statistic. Table 3 reports the parameter 
estimates, the asymptotic p-values of the individual parameters, the GMM overiden-
tifying (χ2) test and the goodness-of-fit tests (RMSE, MAE, and ME) for the models 
over the period spanning July 1952 through December 2018.

The estimated parameters are given in Table 3. It should first be noted that the 
VAS, CIR, CKLS, and AG models have no drift coefficients significant at the 5% 
level. The CKLS and AG models even have volatility parameter estimates that are 
not significantly different from zero. Thus, the CKLS and AG models have no sig-
nificant parameters. In contrast, the VAS and CIR models have statistically signif-
icant volatility parameters. These two models suggest that short rate dynamics is 
solely due to volatility. These results indicate that the VAS, CIR, CKLS, and AG 
models are not able to capture short rate dynamics. On the other hand, the CP model 
has all drift parameters statistically different from zero. However, the CP model 

Theil�s U =

∑n

t=1

r̂t+1−rt+1

r∑n

t=1

rt+1−rt

rt

.

Fig. 2  Short rate, stationary and non-stationary components using Beveridge and Nelson (BN) filter. This 
figure compares the short rate time series to its nonstationary mean and stationary components produced 
using the BN filter. The BN permanent component follows a random walk with drift process. The Fed-
eral Reserve Bank of St. Louis three-month secondary market T-bill rate is used to proxy short rates. The 
sample is from July 1952 through December 2018 (i.e., 797 annualized monthly observations)
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volatility term is not statistically different from zero. Thus, the CP model indicates 
that short rate dynamics are solely due to drift. Only the NSM model has both drift 
and volatility significant, indicating that both drift and volatility contribute to short 
rate dynamics.

By Eq.  (8) the coefficients relating the stochastic mean of the NSM model 
depends on the parameter � =

∑p

j=1
�2

j
  which, in turn, describes the sensitivity of 

the estimated parameters to the serial correlations in the transitory component. In 
the empirical application, though, I find that the estimated parameter to be largely 
insensitive to � . In fact, I find that � is equal to zero. Which implies that that the 
transitory component appears close to AR (1). I use Eq. (8) for reasons of measure-
ment errors, although the gain seems to be minor.

For an overidentified system the p-value of the overidentifying test of Hansen 
(1982) (Over ID test) must be above 5% to be correctly identified. Thus, the VAS 
and CIR models are rejected by the GMM test as their p-values on the Over ID test 
are 0.61% and 0.71%, respectively. The sign of α1 > 0 in the VAS model implies, 
counter-intuitively, that short rates are exploding rather than mean reverting. My 
results are consistent with Aït-Sahalia (1996b) and Bandi (2002), who argue that 
neither of these models are correctly specified. The AG model has the best GMM 
p-value at 23%, however, this model has no coefficient that is statistically significant 
at the 5% level. Thus, the AG model seems to imply, again counter-intuitively, that 

Fig. 3  Short rate, stationary and non-stationary components using HP and boosted HP (bHP) filters. This 
figure compares the short rate time series to its nonstationary mean and stationary components produced 
using the HP and bHP filters. The Federal Reserve Bank of St. Louis three-month secondary market 
T-bill rate is used to proxy short rates. A smoothing constant (1/q) of 43,200 is utilized, which is equiva-
lent to the Ravn and Uhlig (2002) adjustment of the third power of the frequency of observations. The 
sample is from July 1952 through December 2018 (i.e., 797 annualized monthly observations)
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short rates have no mean reversion, and that volatility is not related to short rate 
dynamics. The NSM model is the only model that satisfies the Over ID test and has 
coefficients on both drift and volatility that are significant at the 5% level.

Table 3  Short rate single-factor model estimation

This table presents GMM estimates for the five single-factor short rate models (MOD), namely: the AG 
model of Ahn and Gao (1999), the CKLS model of Chan et al. (1992), the CP model of Chapman and 
Pearson (2000), the CIR model of Cox et al.(1985), and the VAS model of Vasicek (1977) for the period 
starting in July 1952 through December 2018. The models I consider can all be nested within the follow-
ing model:
drt =

(
�0 + �1rt + �2r2

t
+ �3r−1

t

)
dt + �r

�
t dZt where Zt is the standard Brownian motion. I examine the 

following the following discrete-time econometric specification:
rt+1 − rt = �0 + �1rt + �2r2

t
+ �3r−1

t
+ �t+1

with E(�t+1) = 0 and E(�2
t+1

) = �2r
2�
t

I follow Chapman and Pearson (2000) to estimate the models via GMM. The relevant orthognality condi-
tions are explained in Appendix 4.
GMM estimates are also provided for my proposed stochastic mean model, i.e., the NSM model. I follow 
Ravn and Uhlig (2002) and de Jong and Sakarya (2016) to approximate the nonstationary mean, µt, with 
smoothing constants of q = 1/43,200. Also, I report results for my proposed stochastic mean model using 
Phillips and Shi (2021) boosted HP. I denote this model as NSM-bHP. Also, I report results for my pro-
posed stochastic mean model using Hamilton proposed trend. I denote this model as NSM-H. I impose 
various restrictions on the parameters (see Table 1) to obtain standard parametric models for the short 
rate dynamics. GMM estimates of the coefficients, overidentifying tests (OID) of Hansen (1982), their 
significance levels, and goodness-of-fit tests (RMSE, MAE, and MPE). The corresponding p-values are 
in parentheses. I follow Inoue and Shintani (2006) by using the Parzen kernel of Gallant (1987) with two 
lags to compute the moment-weighting matrix. The covariance matrix is robust to heteroskedasticity and 
autocorrelation

MOD α0 (p-
val)

α1 (p-
val)

α2 (p-
val)

α3 (p-
val)

σ2 (p-
val)

γ (p-val) φ (p-val) OID 
(p-val)

RMSE MAE MPE

CP − 0.0021 0.0843 − 0.7076 0 0.1293 1.6355 EXACT 0.00387 0.00229 − 6.3118

(0.0442) (0.0209) (0.0355) (0.0284) (0.4225) (0.0000)

AG 0.0026 − 0.0313 0.0522 1.5 4.3085 0.00373 0.00201 − 1.9887

(0.7727) (0.8437) 0.0000 (0.2300)

CKLS 0.0012 − 0.0222 0.162 1.6794 EXACT 0.00375 0.00216 8.1393

(0.2335) (0.3002) (0.4218) 0.0000

CIR 0.0001 − 0.0004 0.0017 0.5 6.0327 0.00374 0.00201 1.3623

(0.8859) (0.9824) 0.0000 (0.0071)

VAS 0.0000 0.0019 0.0000 0.0000 7.2362 0.00374 0.00201 − 1.3468

(0.9861) (0.9213) 0.0000 (0.0061)

NSM-BN 0.62574 0.00005 3.1177 0.00354 0.00196 − 1.5769

(0.0000) (0.0000) (0.2104)

NSM-HP − 0.0576 0.0000 0.0000 4.9560 0.00363 0.00200 − 3.1588

(0.0050) (0.0099) (0.9999) (0.0839)

NSM-
bHP

0.18611 0.00003 0.0000 1.92375 0.00355 0.00193 − 3.5739

(0.0000) (0.0159) (0.9952) (0.3822)

NSM-
HAM

− 0.0005 0.56451 15.6387 0.00368 0.00201 − 1.3413

(0.9855) (0.9857) (0.0001)
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I compare in-sample forecasting performance of the nonstationary stochastic-
mean (NSM) model using the methods suggested in Hodrick and Prescott (1997), 
Beveridge and Nelson (1981), Phillips and Shi (2021), and Hamilton (2018). I 
denote the models by NSM-BN, NSM-HP NSM-bHP, and NSM-HAM, respec-
tively. I test in-sample fit using the RMSE, MAE, and MPE statistics. Comparing 
the benchmark affine models to the NSM model, I find consistently larger RMSE 
errors. For example, the CP model has an 5.4% increase in RMSE compared to 
NSM-bHP. This is true for all the benchmark models with RMSE error increases 
between 1.6 and 8.4%. Similar results are realized under the MAE measure. The 
NSM model (NSM-bHP in particular) consistently outperforms. Increases in MAE 
are between 0.5% for the AG model to as high 45% for the CP model. Results for the 
MPE measure are even more remarkable with MPE increases between − 6.3 for the 
CP model to as large as 8.14 for the CKLS model.

Table 4 reports parameter estimates for the three multifactor models. As shown, 
none of these models outperform the NSM model. All three goodness-of-fit meas-
ures (i.e. RMSE, MAE, and MPE) suggest that my model with a random walk mean 
outperforms the three multifactor models. No model is consistently best across all 
goodness-of-fit tests except the NSM (NSM-bHB followed by NSM-BN). Although 
the CHEN, Al-Zoubi, and BDF-CIR models perform well with RMSE and MAE. 
The BDF-CIR failed the MPE test. I conclude that CHEN model is the second best 
in terms of RMSE and Al-Zoubi model is the second best in terms of MAE.

Table 5 reports the results of the Theil’s U-statistic for each model against the 
naive random walk model. As shown, the NSM-bHP model reports the lowest 
Theil’s U-statistic among all models. This is followed by NSM-BN model, Al-Zoubi 
model and NSM-HP model. I find that the forecasts from my stochastic mean model 
(except the NSM-HAM) are substantially and statistically more accurate than the 
naive random walk model. I have not found results for other models to be qualita-
tively similar, with the Al-Zoubi model being the exception. Only two single factor 
models (Vasicek and CIR) are found to slightly outperform the random walk model 
by the U test as their statistic are 0.9804 and 0.9431, respectively. For multifac-
tor models, two models forecasting technique is about as good as guessing. Those 
are the Chen and BDF-VAS models. Other models underperform the random walk 
model.

6.2  Out‑of‑sample forecast comparison

In this section I analyze out-of-sample (OOS) forecasts of my model and compet-
ing models. Each benchmark model is compared over the sample period. I use 
data for the period starting in July 1952 through December 2008 for estimation 
and reserve data for the period starting in January 2009 through December 2018 
for out-of-sample forecasting.

First, I test out-of-sample fit using the RMSE, ME, MAE, and Theil’s U statis-
tics. As shown in Table 6, comparing the benchmark affine models to my model, 
I find consistently larger RMSE and MAE errors. Most notably, the NSM-bHP 
model shows impressive gains in forecasting power. For example, NSM-bHP 
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lowers RMSE by 40 percent relative to the CHEN, CIR and Vasicek models. 
The improvement relative to RW is also notable where Theil’s U statistic is 65 
percent.

I next utilize the Pesaran and Timmermann (1992) directional forecast accu-
racy test to predict the change in direction of the short rate. I denote the predicted 
short rate by r̂t . The Pesaran-Timmermann (PT) test statistic can be written as:

where:

n is the number of out-of-sample period and the estimate of the sample variance is 
given by:

Sn

P̂ − P̂∗√
V̂
(

P̂
)
− V̂(P̂∗)

P̂ = n−1

n∑
t=1

I
(
rt, r̂t

)

P̂∗ = P̂rP̂r̂ + (1 − P̂r)(1 − P̂r̂)

Table 5  Theil’s U statistics 
in-sample forecast accuracy: 
naive random walk models vs 
NSM, single and multifactor 
models

The table presents the results of the Theil’s U statistics applied to 
forecast errors of the NSM models and benchmark models against 
the naive random walk model. I use the entire sample period from 
July 1952 through December 2018. There are 797 annualized 
monthly observations.

Theil
�
s U =

∑n

t=1

r̂t+1

−rt+1

r∑n

t=1

rt+1

−rt

rt

.

*The model outperforms the naive random walk model

Model Theil
�

sU

NSM-BN 0.9574*
NSM-HP 0.9097*
NSM-bHP 0.8972*
NSM-HAM 6.7936

Single CP 27.9627
Factor AG 1.0703
Models CKLS 4.1208

CIR 0.9431*
VAS 0.9804*

Multi BDF-VAS 0.9967
Factor BDF-CIR 1.3595
Modes Al-Zoubi 0.9107*

HEST 2.2701
CHEN 0.9993
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and I(.) is the indicator function or the directional accuracy (DA) of the forecast that 
can be defined as.

The null hypothesis maintains that the model does not forecast the direction of the 
change in the short rate, while the alternative hypothesis maintains that the probabil-
ity the model forecast will correctly predict the direction of change in the short rate is 
greater than 50 percent. I set the level of significance at 5%.

As a robustness test, I also utilize the following directional forecast accuracy meas-
ures suggested in Blaskowitz and Herwartz (2011) and evaluated in Bergmeir et  al. 
(2014):

V̂
(

P̂
)
= n−1P̂∗(1 − P̂∗)

V̂
(

P̂∗

)

= n−1
(

2P̂r̂ − 1
)2

P̂r

(

1 − P̂r

)

+ n−1
(

2P̂r − 1
)2

P̂r̂

(

1 − P̂r̂

)

+ 4n−2P̂r̂P̂r

(

1 − P̂r̂

)(

1 − P̂r

)

P̂r̂ = n−1

n∑
t=1

I
(̂
rt

)
, P̂r = n−1

n∑
t=1

I
(
rt

)

I(.) =

{
1 if . > 0

0 otherwise
,

Table 6  Out-of-sample forecast accuracy test: NSM model vs random walk, single and multifactor mod-
els

* The model outperforms the naive random walk model
The table presents goodness-of-fit tests (RMSE, MAE, and MPE) and the Theil’s U statistics applied to 
forecast errors of the NSM model and benchmark models. I use data for the period starting in July 1952 
through December 2008 for estimation and reserve data for the period starting in January 2009 through 
December 2018 for out-of-sample forecasting

Model RMSE MAE MPE Theil
�

sU

NSM-BN 0.00056 0.00035 − 9.570142 0.7912*
NSM− HP 0.00059 0.00039 − 13.07865 0.8903*
NSM-bHP 0.00021 0.00013 − 9.2397 0.6517*
NSM-HAM 0.00057 0.00037 10.11236 1.2461
RW with drift 0.00052 0.00031 − 59.9451 1.34175
RW without drift 0.00054 0.00035 − 3.7551

Single CP 0.04348 0.02668 11,393.5 348.0352
Factor AG 0.00053 0.00034 − 13.9737 1.5657
Models CKLS 0.00113 0.00103 193.6967 4.2208

CIR 0.00051 0.00036 6.6227 1.4234
VAS 0.00053 0.00034 − 16.6293 1.5931

Multi BDF-VAS 0.00052 0.00033 − 13.5009 1.5613
Factor BDF-CIR 0.00068 0.00061 − 103.662 2.2555
Models Al-Zoubi 0.00062 0.00042 − 13.9603 0.9213*

HEST 0.00068 0.00061 94.5644 2.2452
CHEN 0.00054 0.00035 − 14.0696 1.5668
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where MDA is the Mean Directional Accuracy, MDV is the Mean Directional Value, 
and the MDPV is the Mean Directional Percentage Value.

Tables  7 provide the results comparing the competing models against my 
model for the short rate. I find that the directional forecasts from my nonstation-
ary stochastic mean model are statistically more accurate than the competing 
models, (again, Al-Zoubi model is an exception). For example, Models NSM-
bHP and NSM-BN demonstrate superior OOS forecasting ability compared to 
standard models used in the literature across all measures. The improvements 

MDA = n−1

n∑
t=1

I(.)

MDV = n−1

n∑
t=1

||rt+1 − rt
||I(.)

MDPV = n−1

n∑
t=1

|||||
rt − rt

rt+1

|||||
I(.)

Table 7  Out-of-sample directional forecast accuracy test: NSM model vs random walk, single and multi-
factor models

The table presents out-of-sample directional forecast accuracy tests (MDA, MDV, and MDPV) of 
Blaskowitz and Herwartz (2011) and the PT test of Pesaran and Timmermann (1992) applied to the NSM 
model and benchmark models. I use data for the period starting in July 1952 through December 2008 for 
estimation and reserve data for the period starting in January 2009 through December 2018 for out-of-
sample forecasting
* Significant at 5% level

Model MDA MDV MDPV PT

NSM-BN 0.550 0.000010 12.2421 5.4996* (0.0000)
NSM-HP 0.450 0.000063 4.4785 5.4996* (0.0000)
NSM-bHP 0.547 0.000012 13.3168 5.49962* (0.0000)
NSM-HAM 0.408 − 0.000001 4.9334 2.6453* (0.0041)
RW with drift 0.483 0.000199 2.57618
RW without drift 0.542 − 0.00002 − 8.30454 3.8399* (0.0000)

Single CP 0.317 − 0.000062 − 5.49166 − 0.5695 (0.7154)
Factor AG 0.558 0.000175 16.0515 5.4996* (0.0000)
Models CKLS 0.458 0.000184 − 3.84899 − 0.0663 (0.4672)

CIR 0.508 0.000184 10.4784 2.6453* (0.0041)
VAS 0.575 0.000185 16.9117 5.4996* (0.0000)

Multi BDF-VAS 0.558 0.000176 − 16.0515 5.4996* (0.0000)
Factor BDF-CIR 0.517 0.000194 11.7162 5.4996* (0.0000)

Al-Zoubi 0.450 0.000067 4.4873 5.4996* (0.0000)
Modes HEST 0.467 0.000181 − 3.8303 0.33049 (0.6557)

CHEN 0.533 0.000131 15.61828 5.4996* (0.0000)
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relative to the CHEN and RW models are smaller but still of interest. At the same 
time, CHAP, CKLS, and Heston models perform poorly in predicting the direc-
tion of the short rate where the null hypothesis cannot be rejected at 5% signifi-
cance level. My results suggest that, relative to stationary short rate models, more 
accurate short rates forecasts can be obtained by allowing for a random walk 
component mean in the short rate.

In Figs. 4, 5 I present fan plots for out-of-sample forecasts from the NSM-bHP 
and random walk models. The figure compares the short rate (red line) with the fore-
casts from the NSM-bHP model (yellow line) and random walk model (blue line). 
Shaded blue areas show intervals. The figures show that the forecast from the NSM-
bHP model is very close to the true short rate in comparison to the random walk 
model.

6.3  Unspanned risks are the drivers of the nonstationary stochastic mean.

The consensus in literature is that the spanning hypothesis, the yield curve contains 
all information relevant for predicting future bond returns, can be rejected by the 
observed data (see Cooper & Priestley, 2009) and Joslin et al., 2014). Evidence of 
unspanned risks comes from regressions of the form

Fig. 4  Short rate, stationary and non-stationary components using Hamilton filter. This figure com-
pares the short rate time series to its nonstationary mean and stationary components produced 
using the Hamilton (2018) filter. The Federal Reserve Bank of St. Louis three-month second-
ary market T-bill rate is used to proxy short rates. The OLS autoregression of order four that reads: 
r

t+1

= a
0

+ a
1

r
t−7

+ a
2

r
t−8

+ a
3

r
t−9

+ a
4

r
t−10

+ �
t+1

 . The short rate sample is from July 1952 through 
December 2018 (i.e., 797 annualized monthly observations)
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rxt+1 = a + b1PC1t + b2PC2t + b3PC3t + et+1

rxt+1 = a + b1PC1t + b2PC2t + b3PC3t + b4F1t + b5F2t⋯ + et+1

Fig. 5  Fan plots for out-of-sample forecasts from the NSM-bHB model vs random walk model. This fig-
ure compares the short rate (red line) with the forecasts from the NSM model (yellow line) and random 
walk model (blue line). I use data for the period starting in July 1952 through December 2008 for estima-
tion and reserve data for the period starting in January 2009 through December 2018 for out-of-sample 
forecasting
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where rxt+1 is the bond excess returns, PC1, PC2, and PC3 are the first three prin-
cipal components of yields (level, slope, and curvature), and F1, F2,… are the uns-
panned factors. The null hypothesis of spanning hypothesis is

My model is founded on the perception that the excess bond returns are deter-
mined by the nonstationary stochastic mean of the short rates. My theory is that 
the unspanned risks should not be able to predict the stationary component of the 
interest rate. Specifically, I consider the following test specifications, in line with 
Joslin et al. (2014) and Cooper and Priestley (2009):

 where cxt+1 and  �xt+1 are the stationary and permanent components of the excess 
bond returns, respectively. cPCit and pPCit are the stationary and permanent com-
ponents of the three principle components of the yield curve, JPS1 is the one year 
expected inflation rate,  JPS2 is a measure of economic growth (the 3-month moving 
average of the Chicago Fed National Activity Index), GAP is the output gap.

The analysis of the model based on the permanent component is further sup-
ported by regressions of one-year interest rate bond yield in Table 8. It is observed 
that Joslin et al. (2014) factors are unable to predict the stationary component of 

H0 ∶ b4, b5… . = 0

cxt+1 = a + b1cPC1t + b2cPC2t + b3cPC3t + et+1

cxt+1 = a + b1cPC1t + b2cPC2t + b3cPC3t + b4JPS1t + b5JPS2t + et+1

…

cxt+1 = a + b1cPC1t + b2cPC2t + b3cPC3t + b4GAP + et+1

�xt+1 = a + b1pPC1t + b2pPC2t + b3pPC3t + et+1

a + b1pPC1t + b2pPC2t + b3pPC3t + b4JPS1t + b5JPS2t + et+1

�xt+1 = a + b1pPC1t + b2pPC2t + b3pPC3t + b4GAP + et+1

Table 8  Spanned and unspanned 
risk factors inference on interest 
rates and their components

This table reports regressions for the of one-year bond returns. The 
dependent variables are one-year bond returns and their transitory 
and permanent components. The independent variables the Chicago 
Fed National Activity Index (JPS1) and expected inflation (JPS2) in 
Joslin et al (2014) or the output gap in Cooper and Priestley (2009). 
I use data for the period starting in January 1982 through Decem-
ber 2023. The corresponding p-values are in parentheses. I follow 
Bakshi et  al., (2023a, 2023b) by using the Newy-West (1994) het-
eroscedasticity and autocorrelation consistent (HAC) covariance 
matrix estimator. The permanent component is calculated using bHP 
method in Phillips and Shi (2021)

Inflation Growth Output gap

r1,t 2.5572 − 0.00361 0.00229
(0.0000) (0.0000) (0.0647)

μ1,t 2.5888 − 0.00389 0.00164
(0.0000) (0.0298) (0.2017)

c1,t (− 0.0316) (0.0003) (0.0007)
(0.5919) (0.4988) (0.0028)
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the interest rate; rather, they predict its permanent component. Additionally, the 
factor proposed by Cooper and Priestley (2009) (the stationary component of out-
put, or output gap) predicts the stationary component of the interest rate but not 
its permanent component..

An intriguing question to explore is the following: How effectively do the uns-
panned risk factors predict the component of excess bond returns, given the esti-
mation results of the interest rate model? As shown in Table  9, The permanent 
components of the three principal components of the yield do not play any role in 
predicting excess bond returns. The expected inflation (JPS1) helps predict the sta-
tionary component of excess bond returns and the growth (JPS2) helps predict the 
permanent component of the excess returns. Consistent with Bauer and Hamilton 
(2017) I do not find evidence that the output gap predicts excess bond returns.

7  Bond and option prices

An advantage of my model is that closed-form solutions for bond and option prices 
can be derived. Closed-form solutions provide several benefits, including: (i) allow-
ing for consistent estimation and (ii) allowing a full description for bond and option 
prices over all maturities without approximation error. I utilized these closed-form 
solutions to investigate estimation bias.

Estimation bias in pricing options is significant. For example, while estimation 
bias only leads to a 1% downward bias in the bond price, it results in a 24.4% down-
ward bias in option prices (see Phillips and Yu (2005)). Using the Vasicek and the 
CIR models, Tang and Chen (2009) document large underestimation in option val-
ues. This estimation bias remains significant even after reducing it via a jackknife or 
bootstrap algorithm. The reason why estimation error remains is that misspecifica-
tion error accounts for most of the observed bias. Misspecification becomes even 
more severe if either fewer observations are available or longer maturity options are 
priced.

I implement analytical formulas for option prices for the VAS and NSM mod-
els. This allows us to address the issue of biased estimation that may result from 
nonstationary mean models for spot rates. Let Ct,T ,S,K(�) represents the theoretical 
price of a European call option at time t, with strike price K, and maturity S where 
the underlying bond has price   Pt,T (�) that matures at T > S. Sect.  6.1derives 
the analytic formula for the bond price for my NSM model. I utilize the ana-
lytic formula in Vasicek (1977) for the VAS model. First, I compute the implied 
bond prices using parameter estimates for α1 and σ2 from the VAS and the NSM 
model with t = 0 and T = 3. Comparing the implied bond prices with observed 
bond prices, I use the goodness-of-fit test (RMSE) to evaluate the relative per-
formance of the models. Finally, I apply implied option prices from Jamshidian 
(1989) for the models using the analytic formula a European call option with a 
face value of a bond = $100, K = ($90, $95, $99, $100, $101), and S = 1.

I relate the implied option prices of the VAS and NSM models to results of 
Phillips and Yu (2005) and Tang and Chen (2009). If the random walk component 
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Table 9  Spanned and unspanned risk factors inference on excess returns and their components

PC1 PC2 PC3 Inflation Growth GAP

Panel A: three-factor
Excess returns (rx)

0.0183 − 0.4383 0.09299
(0.0000) (0.0000) (0.0003)

HAC (0.0000) (0.0000) (0.0155)
Transitory component of excess returns (cx)

− 0.06904 − 0.36543 0.34892
(0.0151) (0.0000) (0.0004)

HAC (0.1712) (0.0826) (0.0555)
Permanent component of excess returns (px)

0.011329 0.030593 − 0.12868
(0.0000) (0.0000) (0.0000)

HAC (0.1898) (0.4012) (0.4622)
Panel B: Joslin 

et al. (2014)
Excess returns (rx)

0.01064 − 0.43433 0.09074 0.07018 − 0.00062
(0.02397) (0.00000) (0.00061) (0.06114) 0.00680

HAC (0.10927) (0.0000) (0.03391) (0.14082) (0.04316)
Transitory component of excess returns (cx)

− 0.12225 − 0.34454 0.34581 0.20788 0.00020
(0.00000) (0.0000) (0.0001) (0.0000) (0.5896)

HAC (0.0022) (0.0683) (0.0400) (0.0000) (0.6559)
Permanent component of excess returns (px)

0.01155 0.03172 − 0.12440 − 0.00103 − 0.00044
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

HAC (0.3333) (0.5759) (0.5256) (0.9626) (0.0474)
Panel C: 

Cooper and 
Priestley 
(2009)

Excess returns (rx)
0.01858 − 0.43151 0.09468 − 0.00013
(0.0000) (0.0000) (0.0003) (0.0511)

HAC (0.0000) (0.0000) (0.0143) (0.0979)
Transitory component of excess returns (cx)

− 0.04906 − 0.34195 0.34376 − 0.00044
(0.0000) (0.0000) (0.0003) (0.0511)

HAC (0.3039) (0.0749) (0.0421) (0.1182)
Permanent component of excess returns (px)

0.01138 0.03212 − 0.12840 − 0.00003
(0.0000) (0.0000) (0.0000) (0.0821)

HAC (0.0997) (0.1489) (0.2433) (0.5472)
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is the main source of misspecification bias, one would expect higher option prices 
for the NSM model.

Table 7 reports the estimation results for bond and option prices for both the 
VAS and NSM models. As shown, the nonstationary mean plays an important 
role in bond pricing. In fact, my model not only reduces the bias in terms of mean 
by 1.7% (hence bias-reduced), but also reduces standard deviation resulting in a 
substantial overall gain in RMSE. As shown, the RMSE of NSM-HP and NSM-
bHP bond prices are 2.6% and 2% smaller than that of the VAS model.

It is worth noting that assuming a correlation between the nonstationary sto-
chastic mean  and the transitory components reduces the forecasting power in 
bond pricing. As shown in the Table 10, NSM-BN model reports higher RMSE. I 
conclude that modeling the stochastic mean as independent to the current level of 
the short rate is more appropriate in bond pricing. Consistent with the results in 
Tables 5 and 6, NSM-HAM model reports higher RMSE. Phillips and Shi (2021) 
show that the bHP filter numerically and empirically outperforms Hamilton’s 
(2018) autoregressive filter and accelerates the convergence to the actual trend 
when applied to a random walk.

Compared to the VAS model, the NSM-bHP model increases the implied 
option prices by 0.036%—9.4% for in-the-money options and by 68%% for at-the-
money option. The NSM-BN and NSM-HAM models are also able to increase 
the implied option prices. The bias reduction of my proposed model is compara-
ble to the size of the bias reported by Phillips and Yu (2005, Table 5), who find 
that the estimation bias of the mean-reversion parameter leads up to 36.2% down-
ward bias in the in-the-money bond option price and up to 1.84% downward bias 
in the discount bond price. These results confirm that the nonstationary mean is 
an important source of downward bias in implied bond option prices.

Figure 6 shows the implied option price on the discount bond over the sample 
period. I can see that the NSM-HAM model delivers the highest prices during 
periods of both high and low interest rates. I can also see that the NSM-bHP 
model produces higher option prices than the Vasicek model during periods of 
high interest rates. However, the Vasicek model delivers higher option prices than 
NSM-bHP model during periods of low interest rates. Consequently, I expect that 
bias in the stochastic mean is larger when interest rates are volatile. Furthermore, 
the impact depends on the level of interest rates. The higher the interest rate, the 
higher the sensitivity. Finally, the nonlinear magnitude indicates that the bias in 

Table 9  (continued)
This table reports regressions for one-year excess bond returns. The dependent variables are one-year 
excess returns and their transitory and permanent components. In Panel A the independent variables are 
the spanned risk factors (level, slope, and curvature of yield curve). In Panel B the independent vari-
ables are the spanned risk factors and Chicago Fed National Activity Index (JPS1) and expected inflation 
(JPS2) in Joslin et al (2014). In Panel C the independent variables are the spanned risk factors and output 
gap in Cooper and Priestley (2009). I use data for the period starting in January 1982 through December 
2023. The corresponding p-values are in parentheses. I follow Bakshi et al., (2023a, 2023b) by using the 
Newy-West (1994) heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator
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Table 10  Zero-coupon bond and european call option prices

The table provides bond and option prices for the NSM and Vasicek (1977) models. P̂  and Ĉ are the 
estimated zero-coupon bond and European call option prices respectively, and P  is the observed-zero 
coupon bond price. Avg, Std Dev, and RMSE are the estimated average, standard deviation, and root-
mean-square error, respectively. I use parameter estimates for the entire sample to estimate P̂  and Ĉ . To 
test model’s performance, I compare P̂  with the Fama-Bliss data. The data are interpolated three years 
zero-coupon bond prices (see Fama & Bliss, 1987). I compute P̂  and Ĉ monthly using the observed 

Ĉ

Fama-Bliss P P̂ K = 90 K = 95 K = 99 K = 100 K = 101

Panel A: VAS model estimation
Avg 86.1146 88.5134 3.3059 0.9316 0.1006 0.0177 0.0005
St Dev 7.7023 7.5621 3.4892 1.6625 0.2709 0.05104 0.0017
Min 62.6787 63.4882 0 0 0 0 0
Max 99.1348 99.9690 9.9784 4.9788 0.9888 0.2161 0.0083
RMSE 3.0406
Bias 2.4116
Panel B: NSM-BN model estimation
Avg 86.1146 88.5722 3.3296 0.9688 0.0995 0.0026 0
St Dev 7.7023 7.5747 3.5107 1.7262 0.2819 0.0420 0
Min 62.6787 62.3395 0 0 0 0 0
Max 99.1348 100.8038 10.8497 5.9597 1.8543 0.8547 0
RMSE 3.1323
Bias 2.4566
Panel C: NSM-HP model estimation
Avg 86.1146 88.4743 3.2982 0.9179 0.0994 0.0201 0.0012
St Dev 7.7023 7.4883 3.4602 1.6408 0.2704 0.0588 0.0032
Min 62.6787 64.2167 0 0 0 0 0
Max 99.1348 99.9911 9.9982 4.9986 1.0144 0.2532 0.0161
RMSE 2.9879
Bias 2.3501
Panel D: NSM-bHP model estimation
Avg 86.1146 88.5603 3.3189 0.93239 0.1101 0.0299 0.0035
St Dev 7.7023 7.4844 3.4639 1.6537 0.2892 0.0828 0.0103
Min 62.6787 0.6475 0 0 0 0 0
Max 99.1348 0.9996 9.9763 4.9772 1.0244 0.3174 0.0431
RMSE 3.0219
Bias 2.3614
Panel E: NSM-HAM model estimation
Avg 86.1146 88.6803 3.4306 1.0060 0.1372 0.0424 0.0061
St Dev 7.7023 7.5772 3.5509 1.7527 0.3491 0.1147 0.0174
Min 62.6787 63.7238 0 0 0 0 0
Max 99.1348 100.195 10.197 5.1969 1.2233 0.4364 0.0730
RMSE 3.2341
Bias 2.6678
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estimating bond option prices can also arise from the errors in estimating the sto-
chastic trend in the short rate.

8  Conclusion

In this paper, I develop a short rate model that embeds a nonstationary mean in the 
short rate process. Relative to several well-known models, my model provides the 
best fit to the data. The improved performance of my model relative to other models 
in the literature is due to the inclusion of a random walk component in the short rate 
process. A nonstationary mean allows for possible nonlinearity in the drift function. 

three-month Treasury-bill rate for the NSM and Vasicek (1977) models.

For the NSM model, the bond price is given by P̂(t, T , rt) = Exp(A(t, T)rt − [A(t, T) + (T − t)]𝜇t + B(t, T) + D(t, T))

where
A(t, T) =

(
1−e�1 (T−t)

�1

)
 , B(t, T) =

[
A(t,T)+(T−t)

2�2
1

+
A(t,T)2

4�1

]
�2

c
 , and D(t, T) =

�2
� (T−t)3

12
.

For the case of HP and bHP filters
B(t, T) =

[
(A(t,T)+(T−t))

2�2
1

+
A(t,T)2

4�1

][
�2

(1+Q)

]
, and D(t, T) =

(
q�2(T−t)3

12(1+q)

)
.

*The number of observations is 787 due to loss of 11 observations.

Table 10  (continued)

Fig. 6  Option prices implied from Vasicek, NSM-HP, NSM-bHP, and NSM-HAM models. This figure 
compares options prices implied from the Vasicek model (green line), the NSM-HP model (orange line), 
the NSM-bHP model (blue line) and NSM-HAM (red line). I use data for the period starting in July 1952 
through December 2018 to calculate option prices
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My model accords with the assertion of Fama (2006) and Bauer and Rudebusch 
(2020) that the short rate exhibits strong evidence of a nonstationary mean. Empir-
ical results show the procedure of imposing a random walk component is highly 
effective and offers substantial in-sample and out-of-sample pricing improvements. 
In fact, I find that the random walk mean governs a substantial majority of the 
dynamics of bond and bond option prices. In particular, the stochastic mean of the 
interest rates can capture the unspanned risks.

Appendix 1: Bond and option prices

This appendix provides details of the derivations related to bond and option prices 
under random walk mean for the short rate process.

Proof of Proposition 2.1 Consider the NSM model of the short rate introduced in 
Sect. 2. Under the risk-neutral measure, the short rate dynamics are given by

It can be verified using Ito’s formula that

is a solution to the stochastic differential equation (SDE) in (11). It can be shown 
using integration by parts for the second term that

The expectation follows immediately from the equation given above,

Clearly, lim
t→∞

E
[
rt

]
= E

[
�t

]
.

(11)drt = −�1

(
�t − rt

)
dt + �dZt,

d�t = ��dWt.

rt = e�1

[
r0 −

t∫
0

��te
�1u du + �

t∫
0

e�1u dZu

]

rt = e�1t

[
r0 − �t

t∫
0

e−�1udu + �1

t∫
0

d�t

(
t∫

0

e−�1tdt

)
du + �

t∫
0

e−�1udZu

]

= e�1t

[
r0 + �t

(
e−�1t − 1

)
−

t∫
0

�mdW
(
e−�1t − 1

)
du + �

t∫
0

e−�1udZu

]

= e�1t

[
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(
e−�1t − 1

)
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[
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[
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](
e−�1t − 1
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+ E

[
�

t∫
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e−�1udZu
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,

E
[
rt

]
= e�1t

[
r0 + �t

(
e−�1t − 1

)]
.
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Proof of Proposition 2.2 Write

where cu is a solution of the Ornstein–Uhlenbeck equation:

Applying Ito’s lemma, the cu process is given by

Using Eq. (11) I obtain:

Similarly,

Consequently,

Similarly,

From Eq. (12), I have

(12)cu = ru − �u

dc(t) = �1c(t) + �cdZt

(13)cu = e�1u

(
c0 + ∫

u

0

�ce−�1sdZs

)
.

Cov
�
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�
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c
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Therefore,

Furthermore,

Proof of Theorem 2.1 Consider the expected value and variance of short rate spec-
ified in Propositions 2.1 and 2.2. I specify the price of a zero-coupon bond with 
maturity T at time t, P(t, T)using the risk neutral valuation framework:

where 
{

Ft

}
 is standard filtration.

Combining Eqs. (11) to (15), the bond price is given by

E

⎡
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∫
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⎡
⎢⎢⎣

T

∫
t

�
cu + �u

�
du

⎤
⎥⎥⎦

=
�2

c

2�3
1

�
2�1(T − t) + 3 − 4e�1(T−t) + e2�1(T−t)

�
+ �2

m

(T − t)3

6

P(t, T) = E

⎡⎢⎢⎣
exp

⎛⎜⎜⎝
−

T

∫
t

rudu

⎞⎟⎟⎠
�Ft

⎤⎥⎥⎦
= E

⎡⎢⎢⎣
exp

⎛⎜⎜⎝
−

T

∫
t

rudu

⎞⎟⎟⎠
�rt

⎤⎥⎥⎦

(16)

P
�
t, T , rt

�
= exp

⎛
⎜⎜⎝

⎡
⎢⎢⎣
−

T

∫
t

ru

�
rt

�
du

⎤
⎥⎥⎦
+

1

2
Var

⎡
⎢⎢⎣
−

T

∫
t

ru

�
rt

�
du

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= Exp

�
rt − �t

�

�
1 − e�1(T−t)

�
− �t(T − t)

+
�2

c

4�3
1

�
2�1(T − t) + 3 − 4e�1(T−t) + e2�1(T−t) +

�2
�

�2
c

�3
1
(T − t)3

3

��

= Exp

��
1 − e�1(T−t)

�1

�
rt −

�
1 − e�1(T−t)

�1

+ T − t

�
�t

+
�2

c

4�3
1

�
2�1(T − t) + 3 − 4e�1(T−t) + e2�1(T−t)

�
+

�2
�

�2
c

�3
1
(T − t)3

3

�

= Exp
�
A(t, T)rt − �t(A(t, T) + (T − t)) + B(t, T) + D(t, T)

�
.
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where

and

If HP and bHP trends are used, the bond price will be estimated using the signal 
to noise ratio (q). The bond price is given by

where

and

A(t, T) =

(
1 − e�1(T−t)

−�1

)

B(t, T) =

[
A(t, T) + (T − t)

2�2
1

+
A(t, T)2

4�1

]
�2

c

D(t, T) =
�2
�
(T − t)3

12
.

= Exp

(

rt − �t

�1

(

1 − e�1 (T−t)) − �t(T − t) + �2

4�3
1 (1 + q)

(

2�1(T − t) + 3 − 4e�1 (T−t) + e2�1 (T−t) + q
�3

1 (T − t)3

3

))

= Exp

(

(

1 − e�1 (T−t)

�1

)

rt −
(

1 − e�1 (T−t)

�1
+ (T − t)

)

�t +
�2

2�2
1 (1 + q)

(

1 − e�1 (T−t)

�1

)

+ �2

2�2
1 (1 + q)

(T − t)

+ �2

2�1(1 + q)

(

1 − 2e�1 (T−t) + e2�(T−t)

2�2
1

)

+
(

q�2(T − t)3

12(1 + q)

)

)

= Exp

(

A(t, T)rt − �t(A(t, T) + (T − t)) + �2

2�2
1 (1 + q)

A(t, T) + �2

2�2
1 (1 + q)

(T − t)

+ �2

2�1(1 + q)
A(t, T)2 +

(

q�2(T − t)3

12(1 + q)

))

= Exp
(

A(t, T)rt − �t(A(t, T) + (T − t)) + B(t, T) + D(t, T)
)

A(t, T)

(
1 − e�1(T−t)

�1

)
,

B(t, T) ≡ �2

2�2
1
(1 + q)

(A(t, T) + (T − t)) +
�2A(t, T)2

2�(1 + q)
,

D(t, T) =

(
q�2(T − t)3

12(1 + q)

)
.
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Appendix 2: Signal–noise ratio

This appendix provides details of the derivations related to the signal–noise ratio,

The resulting transitory component from (3), ct, possesses weak dependence 
properties with mean zero. Thus, ct is an AR(p) process:

The variance is

It follows immediately that

Now, consider the case in which �t is a random walk process:

I specify  �t as a driftless random walk process:

which can be written as

The variance follows immediately

and

Because the HP filter assume that Wt and Zt  are two independent Brownian 
motions I have,

q = �2
�
∕�2

v
= �2

�
∕

(
1 − �2 −

p∑
j=1

�2
j

)
�2

c
.

ct+1 = �ct +

p∑
j=1

�jct−j + vt+1, vt ∼ NID
(
0, �2

v

)
.

= E
(
c2

t+1

)
−
(
Ect+1

)2
.

(17)�2
c
=

�2
v

1 − �2 −
∑p

j=1
�2

j

.

Δ�t+1 = �t+1 ∼ NID
(

0, �2
�

)
.

�t+1 = �t + �t,

�t+1 = �0 +

t∑
i=1

�t.

�2
�
= (t + 1)�2

�
,

�2
Δ�t+1

= (t + 1)�2
�
+ (t)�2

�
− 2cov

(
�t+1,�t

)
= (t + 1)�2

�
+ (t)�2

�
− 2(t + 1 − 1)�2

�
= �2

�

(18)�2 = �2
�
+ �2

c
,
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Because �t is driftless a random walk process, it follows that

and

.
Therefore,

Appendix 3: Autocorrelated error term

This appendix provides details of derivation related to the variance of the autocor-
related error term, �t+1, , and the variance of the White noise error term, �t+1, of the 
stochastic mean NSM model.

The HP filter case

From Eq. (4a) and Eq. (5a) I have

It follows that

Following Hodrick and Prescott (1997) and Ravn and Uhlig (2002), I make 
the assumption of independence between the permanent and transitory shocks, 
such that �2

c,�
= 0 . (See Kohn & Ansley, 1987). Hence, the variance follows 

immediately

�2
�
= (t + 1 − t)�2

�
,

�2
Δ�

= �2
�

(19)q =
�2
Δ�

�2
c

=
�2
�

�2
c

=
�2
�

�2
c

.

p∑
j=1

�jct−j + vt+1 = ct+1 − �ct

�t+1 =

p∑
j=1

�jct−j + vt+1 + �t+1 =

p∑
j=1

�jct−j + �t+1.

�t+1 = ct+1 − �ct + �t+1,

�2
�
= �2

c
+ �2�2

c
− 2�cov

(
ct+1, ct

)
+ �2

�
.

�2
�
= �2

c
+ �2�2

c
− 2�2�2

c
+ �2

�
.
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Using (19) I obtain,

Defining Ω = 1 − �2 and � = −
p∑

j=1

�2
j
 we can write,

which can be written as,

Because Ω = 1 − �2 and �1 = � − 1, I can write: Ω = �2
1
− 2�1 , then I have,

�2
� =

(

− �
(�+�2

1−2�1)

)

�2
v + �2.

Because q =
�2
�

�2
v

 we obtain,

Plug this in (19) I get,

�2
�
=
(
1 − �2

)
�2

c
+ �2

�
.

�2
�
=

�
1 − �2

�
�

1 − �2 −
∑p

j=1
�2

j

��2
v
+ �2

�
.

�2
�
=

Ω

Ω + �
�2

v
+ �2

�
,

�2
�
=

Ω

Ω + �
�2

v
+ �2

�
+ �2

v
− �2

v

=

(
Ω

Ω + �
− 1

)
�2

v
+ �2

�
+ �2

v
,

=

(
Ω

Ω + �
− 1

)
�2

v
+ �2,

=

(
Ω

Ω + �
− 1

)
�2

v
+ �2,

�2
�
= −

�

Ω + �
�2

v
+ �2,

�2
�
= q�2

v
,

�2 = (1 + q)�2
v
,

�2
v
=

(
1

1 + q

)
�2.
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Because Ω = 1 − �2 and �
1
= � − 1, we can write: Ω = �2

1
− 2� , then we have,

Let

Then

The BN filter case

Because the BN filter assumes that Corr
(
�t, �t

)
= ��� = 1 , I have

�2
�
=

(
−

�

Ω + �

)(
1

1 + q

)
�2 + �2,

�2
�
=

(
1 −

�

(Ω + �)(1 + q)

)
�2.

�2
�
=

(
1 −

�(
� + �2

1
− 2�

)
(1 + q)

)
�2,

�2
�
=

((
�2

1
− 2�1

)
(1 + q) + q�(

� + �2
1
− 2�1

)
(1 + q)

)
�2,

�2
�
=

⎛⎜⎜⎝

�
�2

1
− 2�1

�
+

q

(1+q)
�

�
� + �2

1
− 2�1

�
⎞⎟⎟⎠
�2

� =

⎛⎜⎜⎝

�
�2

1
− 2�1

�
+

q

(1+q)
�

�
� + �2

1
− 2�1

�
⎞⎟⎟⎠

�2
�
= ��2.

�2
�
=

(
−

�(
� + �2

1
− 2�1

)
)
�2

v
+ �2

v
+ �2

�
+ 2�v��

�2
�
=

(
1 −

�(
� + �2

1
− 2�1

)
)
�2

v
+ �2

�
+ 2�v��
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Define � =
�2

v

�2
 I obtain,

Appendix 4: GMM estimation

Define λ as the entire parameter vector. I have the following orthogonality 
conditions:

 1. The Aït-Sahalia Model: �t+1 =
[
rt+1 − rt − �0 − �1rt − �2r2

t
− �3r−1

t

]
 . The 

moment conditions are given by:

 2. The CKLS model: �t+1 =
[
rt+1 − rt − �0 − �1rt

]
 . The moment conditions are 

given by:

 3. The AG model: �t+1 =
[
rt+1 − rt − �0 − �1rt

]
 . The moment conditions are given 

by:

�2
�
=

(
1 −

�(
� + �2

1
− 2�1

)
)
�2

v
+ �2 − �2

v

�2
�
=

(
−

�(
� + �2

1
− 2�1

)
)
�2

v
+ �2

�2
�
=

(
1 −

�(
� + �2

1
− 2�1

) + 2
��

�v

)
�2

v
+ �2

�

�2
�
=

(
−

�(
� + �2

1
− 2�1

) + 2
��

�v

)
�2

v
+ �2

v
+ �2

�

�2
�
=

(
−

�(
� + �2

1
− 2�1

)
)
��2 + �2

�2
�
=

(
1 −

�(
� + �2

1
− 2�1

)�
)
�2

h
(
rt+1, �

)
=
[
�t+1, �t+1rt, �t+1r2

t
, �t+1r−1

t
, �2

t+1
− �2r

2�
t ,

(
�2

t+1
− �2r

2�
t

)
rt

]

h
(
rt+1, �

)
=
[
�t+1, �t+1rt,�

2
t+1

− �2r
2�
t ,

(
�2

t+1
− �2r

2�
t

)
rt

]
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 4. The CIR Model: �t+1 =
[
rt+1 − rt − �0 − �1rt

]
 . The moment conditions are 

given by:

 5. The Vasicek Model: �t+1 =
[
rt+1 − rt − �0 − �1rt

]
 . The moment conditions are 

given by:

 6. The BDF Model: �t+1 =
[
rt+1 − rt + �1

(
�t − rt

)]
 . The moment conditions are 

given by:

where

 and

 where �1 = 0 if BDF-VAS is considered and �0 = 0 if BDF-CIR is considered.
 7. T h e  H e s t o n  M o d e l :  �t+1 =

[
rt+1 − rt − �0 − �1rt

]
 a n d 

�v,t+1 =
[
vt+1 − vt − �v − �vvt

]
 . The moment conditions are given by:

 I follow Andersen, and Lund (1997) and specify vt+1 as a GARCH(1,1) model.
 8. T h e  C h e n  M o d e l :  �t+1 =

[
rt+1 − rt + �1

(
�t − rt

)]
,  

�v,t+1 =
[
vt+1 − vt − �vo − �v1vt

]
, and  ��,t+1 =

[
�t+1 − �t − ��o − ��1�t

]
. The 

m o m e n t  c o n d i t i o n s  a r e  g i v e n  b y : 
h
(

rt+1, �
)

=
[

�t+1, �v,t+1, ��,t+1, �t+1rt,�v,t+1vt, , ��,t+1�t, , �2
v,t+1 − �2

v ,
(

�2
v,t+1 − �2

v ,
)

vt , �2
�,t+1 − �2

� ,
(

�2
�,t+1 − �2

� ,
)

�t

] . I fol-
low Andersen, and Lund (1997) and specify vt+1 as a GARCH(1,1) model.

 9. The Al-Zoubi (2019) I(2) model: �t+1 =
[
rt+1 − rt − �1ct

]
.

h
(

rt+1, �
)

=
[

�t+1, �t+1rt,�t+1r2
t , �2

t+1 − �2r2�
t ,

(

�2
t+1 − �2r3

t
)

rt ,
(

�2
t+1 − �2r3

t
)

r3
t

]

h
(
rt+1, �

)
=
[
�t+1, �t+1rt,�

2
t+1

− �2rt,
(
�2

t+1
− �2rt

)
rt

]

h
(
rt+1, �

)
=
[
�t+1, �t+1rt,�

2
t+1

− �2,
(
�2

t+1
− �2

)
rt

]

h
(
rt+1, �

)
=
[
�t+1, �t+1rt,�t+1r1,t, �t+1r2,t,�

2
t+1

− �2,
(
�2

t+1
− �2

)
rt

]

�t = ��,1

[
B
(
T2

)
T1r1,t − B

(
T1

)
T2r2,T

]

B(T) =
2
(
e�T − 1

)

(� + k)
(
e�T − 1

)
+ 2�

�2 = �2
0
+ �2

1
rt

� =

√(
�2 + �2

1

)

h
(
rt+1, �

)
=
[
�t+1, �v,t+1, �t+1rt, �v,t+1vt, �

2
v,t+1

− �2
v
,
(
�2

v,t+1
− �2

v

)
vt

]

h
(
rt+1, �

)
=
[
�t+1, �t+1ct, �

2
t+1

− �2,
(
�2

t+1
− �2

)
ct

]
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 10. The NSM-HP and NSM-bHP Models:�t+1 =
[
rt+1 − rt − �1ct

]
 . Letting:

then 

.
 11. The NSM-HAM Model:
   �t+1 =

[
rt+1 − rt − �1

(
rt − b0 − b1rt−7 − b2rt−8 − b3rt−9 − b4rt−10

)]
 .  T h e 

moment conditions are given by:
   h

(
rt+1, �

)
=
[
�t+1, �t+1rt, �

2
t+1

− �2,
(
�2

t+1
− �2

)
rt

]
.

To test the validity of my model, I minimize the GMM criterion of the form,

where WT is a consistent estimate of 
(
var

[
(1∕T)

(
f
(
xt+1, Yt, �

)
t

)])−1 and Yt is a 
K-dimensional vector of instrumental variables.

Under the null hypothesis that GMM restrictions are valid, I have that:

For my model to be robust with respect to heteroskedasticity and autocorrelation 
variance, I follow Inoue and Shintani (2006) and use the Parzen kernel of Gallant 
(1987) with two lags to calculate the moments weighting matrix.
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