MNT 512

This is introductory course in polymer in energy, environment and biomedical studies will focus on polymeric manufacturing procedures, characterization, and applications. It will include different types of synthetic techniques that are commonly used in modifying the polymer matrix composites.

MNT 510

 

This course focuses on the fundamentals of Nanoscience and Nanotechnology such as the basic properties of nanoparticles, structural control of nanoparticles and environmental and safety issues with nanoparticles.  In addition, this will introduce the students to the synthesis and characterization of nanomaterial for possible applications in Nanotechnology.   

Moreover, this course will also focus on the current and future nanotechnology applications in engineering, materials, physics, chemistry, biology, electronics, and energy

LSR 421

LSR 421 and consecutive LSR 422 courses represent a two-semester-term individually guided investigation project involving laboratory work and/or computational investigation in specific aspects of experimental and theoretical biomedical sciences. The background, results and conclusions of the study are reported in the form of an oral presentation in the second half of spring semester and a thesis, submitted at the end of the course, which includes a review of relevant literature, data presentation and analysis and discussion. Course subject and materials are individually designed for each enrolled student by supervisor. This course develops transferable skills, associated with laboratory-based experimental project work in Biomedical Sciences.

PHU 205

This course is the first of a two-semester sequence that introduces the basic concepts of algebra-based physics. It deals in essence with classical mechanics. The topics covered include particle kinematics and dynamics; conservation of energy and linear momentum; rotational kinematics and angular momentum; fluids; simple harmonic motion and waves

PHU 103

This course is about the nature of motion, and the constituents of matter. The motion of a ball in the air, a car on the street, and the Moon in the sky seem familiar to all. However, many of the ways we initially think about these motions do not lend themselves to quantitative analysis, nor do they allow us to think about all these phenomena in a unified way. If one retrains one’s thinking to a disciplined approach in terms of position, velocity, acceleration, and force, all motion, from the smallest molecule to the largest galactic cluster, may be seen to share a common description. One may apply this understanding to such disparate topics as the flow of blood in veins, bridge design, the banking of race car tracks, and the air conditioning of an Alfaisal University classroom on a hot summer day. These phenomena are the stuff of everyday life, they are of great value throughout science and technology, and mastering these concepts is great fun!