Dr. Souraya Goumri Said

Professor of Physics

Email

Bio

Add
My Bio-Last update September 2023

Born in Toulouse (France), Souraya Goumri-Said is associate professor of Physics at Alfaisal University (Riyadh, KSA). She received her PhD degree from the Bourgogne University in Dijon (France) on 2004. Souraya spent one year in Val de Marne University as temporary assistant professor then joined the condensed matter group in physics department of technical university of Kaisterslautern in Germany on 2005. From 2006 to 2010, she was awarded different research fellows in France and Belgium as postdoctoral and assistant professor at Maine University (Le Mans, France) from 2006 to 2008. Then she worked as researcher at Namur University (Belgium) from 2008 to 2010. Souraya worked and managed an industrial project within Arcelor Mital research and development department in collaboration with three universities in Wallonie region in Belgium. From July 2010, she was employed at KAUST University (Saudi Arabia) before joining Georgia Tech where she is working as research scientist within Prof. Jean-Luc Bredas group at the School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics. Her main area of research is density functional theory applied to material science and modeling the physical properties of functionalized materials such as perovskites, ceramics, carbides, nitrides, and materials for storage hydrogen. She also specializes in modeling optical, photonic devices and nanostructures for photovoltaic applications. Souraya is editor of open Physics (former the central European journal of physics,) within Dedegruyter edition since 2008. She edited her first book on 2006 about ab-initio methods applied to physical properties of semiconductors nitrides and perovskites. Souraya is author and co-author of more than 217 papers, 6 chapters, 2 filled parents, and books with h-index=37. She is recipient of LEWAS - Leadership Excellence for Women Awards & Symposium Awards: Academic Achievement for Professor award category and Faculty Awards for Research Excellence at Alfaisal University, 2022. She joined the advisory Editorial Board of computational condensed matter journal at Elsevier.

CV

Publications

Add

Ferromagnetism carried by highly delocalized hybrid states in Sc-doped ZnO thin films

Journal Article ,
Ferromagnetism carried by highly delocalized hybrid states in Sc-doped ZnO thin films. (2012). Applied Physics Letters, 100, 222406.

Ab initio study of the bandgap engineering of Al 1- x Ga x N for optoelectronic applications

Journal Article ,
Ab initio study of the bandgap engineering of Al 1- x Ga x N for optoelectronic applications. (2011). Journal of Applied Physics, 109, 023109.

Ab initio study of the bandgap engineering of Al 1- x Ga x N for optoelectronic applications

Journal Article ,
Ab initio study of the bandgap engineering of Al 1- x Ga x N for optoelectronic applications. (2011). Journal of Applied Physics, 109, 023109.

Ab initio study of the bandgap engineering of for optoelectronic applications

Journal Article ,
Ab initio study of the bandgap engineering of for optoelectronic applications. (2011). Journal of Applied Physics 109 (2), 023109, 2011.

Cr-Doped III–V nitrides: potential candidates for spintronics

Journal Article ,
Cr-Doped III–V nitrides: potential candidates for spintronics. (2011). Journal of Electronic Materials 40 (6), 1428-1436, 2011, 40, 1428–1436.

Ab initio investigation on the magnetic ordering in Gd doped ZnO

Journal Article ,
Ab initio investigation on the magnetic ordering in Gd doped ZnO. (2011). Journal of Applied Physics 109 (8), 083929, 2011, 109, 083929.

Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies

Journal Article ,
Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies. (2011). Thin Solid Films 519 (10), 3283-3287, 2011, 519, 3283–3287.

Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo …

Journal Article ,
Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo …. (2011). Open Physics 9 (1), 205-212, 2011.

Cr-doped III–V nitrides: potential candidates for spintronics

Journal Article ,
Cr-doped III–V nitrides: potential candidates for spintronics. (2011). Journal of Electronic Materials, 40, 1428–1436.

Ab initio investigation on the magnetic ordering in Gd doped ZnO

Journal Article ,
Ab initio investigation on the magnetic ordering in Gd doped ZnO. (2011). Journal of Applied Physics, 109, 083929.

Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies

Journal Article ,
Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies. (2011). Thin Solid Films, 519, 3283–3287.

Investigating the adsorption of H2O on ZnO nanoclusters by first principle calculations

Journal Article ,
Investigating the adsorption of H2O on ZnO nanoclusters by first principle calculations. (2011). Chemical Physics Letters 507 (1-3), 111-116, 2011, 507, 111–116.

Investigating the adsorption of H2O on ZnO nanoclusters by first principle calculations

Journal Article ,
Investigating the adsorption of H2O on ZnO nanoclusters by first principle calculations. (2011). Chemical Physics Letters, 507, 111–116.

Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo-potential ab initio calculations

Journal Article ,
Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo-potential ab initio calculations. (2011). Open Physics, 9, 205–212.

Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo-potential ab initio calculations

Journal Article ,
Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo-potential ab initio calculations. (2011). Open Physics, 9, 205–212.

Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms

Journal Article ,
Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms. (2010). Physics Letters A, 374, 3977–3981.

Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr2AC

Journal Article ,
Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr2AC. (2010). Solid State Sciences 12 (5), 887-898, 2010, 12, 887–898.

Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr2AC

Journal Article ,
Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr2AC. (2010). Solid State Sciences, 12, 887–898.

Origin of incompressibility and hardness from electronic and mechanical properties of hard material ruthenium diboride

Journal Article ,
Origin of incompressibility and hardness from electronic and mechanical properties of hard material ruthenium diboride. (2010). Solid State Communications 150 (23-24), 1095-1098, 2010, 150, 1095–1098.

Origin of incompressibility and hardness from electronic and mechanical properties of hard material ruthenium diboride

Journal Article ,
Origin of incompressibility and hardness from electronic and mechanical properties of hard material ruthenium diboride. (2010). Solid State Communications, 150, 1095–1098.

Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms

Journal Article ,
Ab-initio investigations of the electronic properties of bulk wurtzite Beryllia and its derived nanofilms. (2010). Physics Letters A 374 (38), 3977-3981, 2010, 374, 3977–3981.

PtMn3N0. 25: A potential candidate for spintronic applications by ab initio calculations

Journal Article ,
PtMn3N0. 25: A potential candidate for spintronic applications by ab initio calculations. (2009). Journal of Magnetism and Magnetic Materials, 321, 1012–1014.

First-Principles investigations of the physical properties of magnesium nitridoboride

Journal Article ,
First-Principles investigations of the physical properties of magnesium nitridoboride. (2009). The Journal of Physical Chemistry C 113 (12), 4997-5003, 2009, 113, 4997–5003.

Ab initio calculation of electronic structure and magnetic properties of rare earth nitride using LDA+ U approach: EuN and GaEuN

Conference Paper ,
Ab initio calculation of electronic structure and magnetic properties of rare earth nitride using LDA+ U approach: EuN and GaEuN. (2009). Materials Science Forum, 609, 167–172. Trans Tech Publications.

Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC

Journal Article ,
Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC. (2009). Computational Materials Science 47 (2), 491-500, 2009, 47, 491–500.

First-Principles investigations of the physical properties of magnesium nitridoboride

Journal Article ,
First-Principles investigations of the physical properties of magnesium nitridoboride. (2009). The Journal of Physical Chemistry C, 113, 4997–5003.

Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC

Journal Article ,
Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC. (2009). Computational Materials Science, 47, 491–500.

Steric effect on the M site of nanolaminate compounds M $\{$sub 2$\}$ SnC (M= Ti, Zr, Hf and Nb)

Journal Article ,
Steric effect on the M site of nanolaminate compounds M $\{$sub 2$\}$ SnC (M= Ti, Zr, Hf and Nb). (2009).

Steric effect on the M site of nanolaminate compounds M $\{$sub 2$\}$ SnC (M= Ti, Zr, Hf and Nb)

Journal Article ,
Steric effect on the M site of nanolaminate compounds M $\{$sub 2$\}$ SnC (M= Ti, Zr, Hf and Nb). (2009).

Steric effect on the M site of nanolaminate compounds M2SnC (M= Ti, Zr, Hf and Nb)

Journal Article ,
Steric effect on the M site of nanolaminate compounds M2SnC (M= Ti, Zr, Hf and Nb). (2009). Journal of Physics: Condensed Matter 21 (4), 045404, 2009, 21, 045404.

Steric effect on the M site of nanolaminate compounds M2SnC (M= Ti, Zr, Hf and Nb)

Journal Article ,
Steric effect on the M site of nanolaminate compounds M2SnC (M= Ti, Zr, Hf and Nb). (2009). Journal of Physics: Condensed Matter, 21, 045404.

PtMn3N0. 25: A potential candidate for spintronic applications by ab initio calculations

Journal Article ,
PtMn3N0. 25: A potential candidate for spintronic applications by ab initio calculations. (2009). Journal of Magnetism and Magnetic Materials 321 (8), 1012-1014, 2009, 321, 1012–1014.

Ab initio calculation of electronic structure and magnetic properties of rare earth nitride using LDA+ U approach: EuN and GaEuN

Journal Article ,
Ab initio calculation of electronic structure and magnetic properties of rare earth nitride using LDA+ U approach: EuN and GaEuN. (2009). Materials Science Forum 609, 167-172, 2009.

Analysis of Mn K edge X-ray absorption spectrum in Al1-xMnxN by full potential calculations

Journal Article ,
Analysis of Mn K edge X-ray absorption spectrum in Al1-xMnxN by full potential calculations. (2008). Physica B: Condensed Matter 403 (17), 2847-2850, 2008, 403, 2847–2850.

Theoretical investigations of structural, elastic, electronic and thermal properties of Damiaoite PtIn2

Journal Article ,
Theoretical investigations of structural, elastic, electronic and thermal properties of Damiaoite PtIn2. (2008). Computational Materials Science 43 (2), 243-250, 2008, 43, 243–250.

Analysis of Mn K edge X-ray absorption spectrum in Al1-xMnxN by full potential calculations

Journal Article ,
Analysis of Mn K edge X-ray absorption spectrum in Al1-xMnxN by full potential calculations. (2008). Physica B: Condensed Matter, 403, 2847–2850.

Theoretical investigations of structural, elastic, electronic and thermal properties of Damiaoite PtIn2

Journal Article ,
Theoretical investigations of structural, elastic, electronic and thermal properties of Damiaoite PtIn2. (2008). Computational Materials Science, 43, 243–250.

Theoretical study of structural parameters and energy gap composition dependence of Ga1- xBxN alloys

Journal Article ,
Theoretical study of structural parameters and energy gap composition dependence of Ga1- xBxN alloys. (2008). Semiconductor Science and Technology, 23, 125036.

Theoretical study of structural parameters and energy gap composition dependence of Ga1- xBxN alloys

Journal Article ,
Theoretical study of structural parameters and energy gap composition dependence of Ga1- xBxN alloys. (2008). Semiconductor Science and Technology, 23, 125036.

Theoretical study of structural parameters and energy gap composition dependence of Ga1− xBxN alloys

Journal Article ,
Theoretical study of structural parameters and energy gap composition dependence of Ga1− xBxN alloys. (2008). Semiconductor Science and Technology 23 (12), 125036, 2008.

Electronic structure and magnetism of Eu-doped GaN: first-principles study based on LDA+ U

Journal Article ,
Electronic structure and magnetism of Eu-doped GaN: first-principles study based on LDA+ U. (2008). Journal of Physics D: Applied Physics 41 (3), 035004, 2008, 41, 035004.

Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations

Journal Article ,
Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. (2007). Physics Letters A 362 (1), 73-83, 2007, 362, 73–83.

Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations

Journal Article ,
Investigation of structural stability and electronic properties of CuN, AgN and AuN by first principles calculations. (2007). Physics Letters A, 362, 73–83.

Structure and mechanical stability of molybdenum nitrides: A first-principles study

Journal Article ,
Structure and mechanical stability of molybdenum nitrides: A first-principles study. (2007). Physical Review B 76 (13), 134109, 2007, 76, 134109.

Structure and mechanical stability of molybdenum nitrides: A first-principles study

Journal Article ,
Structure and mechanical stability of molybdenum nitrides: A first-principles study. (2007). Physical Review B, 76, 134109.

Ab initio study of electronic structures and magnetism in ZnMnTe and CdMnTe diluted magnetic semiconductors

Journal Article ,
Ab initio study of electronic structures and magnetism in ZnMnTe and CdMnTe diluted magnetic semiconductors. (2006). Journal of Magnetism and Magnetic Materials 302 (2), 536-542, 2006, 302, 536–542.

Ab initio study of electronic structures and magnetism in ZnMnTe and CdMnTe diluted magnetic semiconductors

Journal Article ,
Ab initio study of electronic structures and magnetism in ZnMnTe and CdMnTe diluted magnetic semiconductors. (2006). Journal of Magnetism and Magnetic Materials, 302, 536–542.

First-principles investigation of electronic structure and magnetic properties in ferromagnetic Ga {sub x} Mn {sub 1-x} N and Al {sub x} Mn {sub 1-x} N

Journal Article ,
First-principles investigation of electronic structure and magnetic properties in ferromagnetic Ga {sub x} Mn {sub 1-x} N and Al {sub x} Mn {sub 1-x} N. (2005). Journal of Physics. D, Applied Physics 38, 2005.

Electronic structure: Wide-band, narrow-band, and strongly correlated systems-Electronic properties of the binary noble metal nitride PtN: First-principles calculations

Journal Article ,
Electronic structure: Wide-band, narrow-band, and strongly correlated systems-Electronic properties of the binary noble metal nitride PtN: First-principles calculations. (2005). Physical Review-Section B-Condensed Matter, 72, 113103–113103.

First-principles investigation of electronic structure and magnetic properties in ferromagnetic Ga1− xMnxN and Al1− xMnxN

Journal Article ,
First-principles investigation of electronic structure and magnetic properties in ferromagnetic Ga1− xMnxN and Al1− xMnxN. (2005). Journal of Physics D: Applied Physics 38 (12), 1853, 2005.

Presentations

Add
No Presentation added

Calendar

Add
No Event Found

Announcements

Add
No Announcement Found

Classes

Add

PHU 101 - Astronomy

This course serves as a science elective to help students fulfill part of their science requirements. It consists of an introduction to astronomy from a predominantly descriptive perspective; quantitative parts will be included whenever conducive throughout the semester. The level of mathematics required form the student is pre-calculus; without it, the student will not be able to follow the quantitative parts of the course. The topics to be covered will include the night sky, telescopes, the solar system and its formation theories, the life cycle of stars, galaxies and the general structure of the universe, and an introduction to cosmology.

EE 209: Applied Electromagnetics

The course presents the principles of electromagnetic (EM) fields and their propagation, power and energy content, and properties in guided and unguided structures. The course begins by review of work and fields, complex numbers and phasors. The course aims to build a bridge between circuit theory and the EM material through the detailed treatment transmission lines. The course then covers vector analysis and orthogonal coordinate systems, and introduces Maxwell’s equations for the general case of time-varying fields. Properties of electrostatic and magnetostatic fields and laws, and electric and magnetic boundary conditions are then studies in details

MNT511 :Renewable Energy Storage Systems

Students will be exposed to a broad brush of topics related to energy and environment with a focus on a societal problem of great current concern—namely, the use of energy and the local, regional, and global environmental effects that use engenders. Students will become familiar with the modern technology being used to ameliorate these adverse environmental effects. It enables the student to integrate this understanding into an appreciation of both the technology and science that must be employed by nations to maintain a livable environment while providing improved economic circumstances for their populations. In our life of every day, we see these forms. For examples a rechargeable battery stores readily convertible chemical energy to operate a mobile phone. Even food(which is made by the same process as fossil fuels) is a form of energy stored in chemical form.Energy storage is a dominant factor in economic development of our country and life. The main target of the present course is to assess and understand the process behind the most important (and well known) forms of storing energy. We will focus on solar cells as devices for storing solar energy in order to understand their functioning mode for photovoltaic applications.

MNT 512

This is introductory course in polymer in energy, environment and biomedical studies will focus on polymeric manufacturing procedures, characterization, and applications. It will include different types of synthetic techniques that are commonly used in modifying the polymer matrix composites.

MNT 510

 

This course focuses on the fundamentals of Nanoscience and Nanotechnology such as the basic properties of nanoparticles, structural control of nanoparticles and environmental and safety issues with nanoparticles.  In addition, this will introduce the students to the synthesis and characterization of nanomaterial for possible applications in Nanotechnology.   

Moreover, this course will also focus on the current and future nanotechnology applications in engineering, materials, physics, chemistry, biology, electronics, and energy

LSR 421

LSR 421 and consecutive LSR 422 courses represent a two-semester-term individually guided investigation project involving laboratory work and/or computational investigation in specific aspects of experimental and theoretical biomedical sciences. The background, results and conclusions of the study are reported in the form of an oral presentation in the second half of spring semester and a thesis, submitted at the end of the course, which includes a review of relevant literature, data presentation and analysis and discussion. Course subject and materials are individually designed for each enrolled student by supervisor. This course develops transferable skills, associated with laboratory-based experimental project work in Biomedical Sciences.

PHU 205

This course is the first of a two-semester sequence that introduces the basic concepts of algebra-based physics. It deals in essence with classical mechanics. The topics covered include particle kinematics and dynamics; conservation of energy and linear momentum; rotational kinematics and angular momentum; fluids; simple harmonic motion and waves

PHU 103

This course is about the nature of motion, and the constituents of matter. The motion of a ball in the air, a car on the street, and the Moon in the sky seem familiar to all. However, many of the ways we initially think about these motions do not lend themselves to quantitative analysis, nor do they allow us to think about all these phenomena in a unified way. If one retrains one’s thinking to a disciplined approach in terms of position, velocity, acceleration, and force, all motion, from the smallest molecule to the largest galactic cluster, may be seen to share a common description. One may apply this understanding to such disparate topics as the flow of blood in veins, bridge design, the banking of race car tracks, and the air conditioning of an Alfaisal University classroom on a hot summer day. These phenomena are the stuff of everyday life, they are of great value throughout science and technology, and mastering these concepts is great fun!