Dr. Souraya Goumri Said

Professor of Physics

Email

Bio

Add
My Bio-Last update September 2023

Born in Toulouse (France), Souraya Goumri-Said is associate professor of Physics at Alfaisal University (Riyadh, KSA). She received her PhD degree from the Bourgogne University in Dijon (France) on 2004. Souraya spent one year in Val de Marne University as temporary assistant professor then joined the condensed matter group in physics department of technical university of Kaisterslautern in Germany on 2005. From 2006 to 2010, she was awarded different research fellows in France and Belgium as postdoctoral and assistant professor at Maine University (Le Mans, France) from 2006 to 2008. Then she worked as researcher at Namur University (Belgium) from 2008 to 2010. Souraya worked and managed an industrial project within Arcelor Mital research and development department in collaboration with three universities in Wallonie region in Belgium. From July 2010, she was employed at KAUST University (Saudi Arabia) before joining Georgia Tech where she is working as research scientist within Prof. Jean-Luc Bredas group at the School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics. Her main area of research is density functional theory applied to material science and modeling the physical properties of functionalized materials such as perovskites, ceramics, carbides, nitrides, and materials for storage hydrogen. She also specializes in modeling optical, photonic devices and nanostructures for photovoltaic applications. Souraya is editor of open Physics (former the central European journal of physics,) within Dedegruyter edition since 2008. She edited her first book on 2006 about ab-initio methods applied to physical properties of semiconductors nitrides and perovskites. Souraya is author and co-author of more than 217 papers, 6 chapters, 2 filled parents, and books with h-index=37. She is recipient of LEWAS - Leadership Excellence for Women Awards & Symposium Awards: Academic Achievement for Professor award category and Faculty Awards for Research Excellence at Alfaisal University, 2022. She joined the advisory Editorial Board of computational condensed matter journal at Elsevier.

CV

Publications

Add

Engel–Vosko generalized gradient approximation within DFT investigations of optoelectronic and thermoelectric properties of copper thioantimonates (III) and thioarsenate (III) for solar-energy conversion

Journal Article ,
Engel–Vosko generalized gradient approximation within DFT investigations of optoelectronic and thermoelectric properties of copper thioantimonates (III) and thioarsenate (III) for solar-energy conversion. (2016). Physica Status Solidi (b), 253, 583–590.

Engel–Vosko generalized gradient approximation within DFT investigations of optoelectronic and thermoelectric properties of copper thioantimonates (III) and thioarsenate (III) for solar-energy conversion

Journal Article ,
Engel–Vosko generalized gradient approximation within DFT investigations of optoelectronic and thermoelectric properties of copper thioantimonates (III) and thioarsenate (III) for solar-energy conversion. (2016). Physica Status Solidi (b), 253, 583–590.

Designing a molecular device for organic solar cell applications based on Vinazene: IV characterization and efficiency predictions

Journal Article ,
Designing a molecular device for organic solar cell applications based on Vinazene: IV characterization and efficiency predictions. (2016). Solar Energy 140, 124-129, 2016, 140, 124–129.

Engel-Vosko GGA Approach Within DFT Investigations of the Optoelectronic Structure of the Metal Chalcogenide Semiconductor CsAgGa2Se4

Journal Article ,
Engel-Vosko GGA Approach Within DFT Investigations of the Optoelectronic Structure of the Metal Chalcogenide Semiconductor CsAgGa2Se4. (2016). Journal of Electronic Materials 45 (1), 746, 2016, 45, 746.

Designing a molecular device for organic solar cell applications based on Vinazene: IV characterization and efficiency predictions

Journal Article ,
Designing a molecular device for organic solar cell applications based on Vinazene: IV characterization and efficiency predictions. (2016). Solar Energy, 140, 124–129.

First principles study of the adsorption and dissociation mechanisms of H 2 S on a TiO 2 anatase (001) surface

Journal Article ,
First principles study of the adsorption and dissociation mechanisms of H 2 S on a TiO 2 anatase (001) surface. (2016). RSC Advances 6 (10), 7941-7949, 2016, 6, 7941–7949.

Peculiarity of Thiophene/Graphene interface for organic electronic applications

Journal Article ,
Peculiarity of Thiophene/Graphene interface for organic electronic applications. (2016). APS March Meeting Abstracts 2016, C15. 010, 2016.

First principles study of the adsorption and dissociation mechanisms of H 2 S on a TiO 2 anatase (001) surface

Journal Article ,
First principles study of the adsorption and dissociation mechanisms of H 2 S on a TiO 2 anatase (001) surface. (2016). RSC Advances, 6, 7941–7949.

Transport phenomenon in boron–GroupV linear atomic chains under tensile stress for nanoscale devices and interconnects: first principles analysis

Journal Article ,
Transport phenomenon in boron–GroupV linear atomic chains under tensile stress for nanoscale devices and interconnects: first principles analysis. (2016). IEEE Transactions on Electron Devices 63 (12), 4899-4906, 2016, 63, 4899–4906.

Computational modeling and characterization of X–Bi (X= B, Al, Ga, In) compounds: prospective optoelectronic materials for infrared/near infra applications

Journal Article ,
Computational modeling and characterization of X–Bi (X= B, Al, Ga, In) compounds: prospective optoelectronic materials for infrared/near infra applications. (2016). Computational Materials Science 114, 40-46, 2016, 114, 40–46.

Transport Phenomenon in Boron–GroupV Linear Atomic Chains Under Tensile Stress for Nanoscale Devices and Interconnects: First Principles Analysis

Journal Article ,
Transport Phenomenon in Boron–GroupV Linear Atomic Chains Under Tensile Stress for Nanoscale Devices and Interconnects: First Principles Analysis. (2016). IEEE Transactions on Electron Devices, 63, 4899–4906.

Density-functional theory study of high hydrogen content complex hydrides Mg (BH4) 2 at low temperature

Journal Article ,
Density-functional theory study of high hydrogen content complex hydrides Mg (BH4) 2 at low temperature. (2016). Renewable Energy 90, 114-119, 2016, 90, 114–119.

Density-functional theory study of high hydrogen content complex hydrides Mg (BH4) 2 at low temperature

Journal Article ,
Density-functional theory study of high hydrogen content complex hydrides Mg (BH4) 2 at low temperature. (2016). Renewable Energy, 90, 114–119.

Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations

Journal Article ,
Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations. (2016). Frontiers of Physics 11, 117101, 2016, 11, 117101.

Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations

Journal Article ,
Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations. (2016). Frontiers of Physics, 11, 117101.

DFT combined to Boltzmann transport theory for optoelectronic and thermoelectric properties investigations for monoclinic metallic selenide: Cu5Sn2Se7

Journal Article ,
DFT combined to Boltzmann transport theory for optoelectronic and thermoelectric properties investigations for monoclinic metallic selenide: Cu5Sn2Se7. (2016). Optik 127 (13), 5472-5478, 2016, 127, 5472–5478.

Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A= K, Rb)

Journal Article ,
Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A= K, Rb). (2015). Materials Research Bulletin, 70, 847–855.

Exploring the optoelectronic structure and thermoelectricity of recent photoconductive chalcogenides compounds, CsCdInQ3 (Q = Se, Te)

Journal Article ,
Exploring the optoelectronic structure and thermoelectricity of recent photoconductive chalcogenides compounds, CsCdInQ3 (Q = Se, Te). (2015). RSC Advances, 5, 9455–9461.

Tuning Magnetic Properties of BiFeO3 Thin Films by Controlling Rare-Earth Doping: Experimental and First-Principles Studies

Journal Article ,
Tuning Magnetic Properties of BiFeO3 Thin Films by Controlling Rare-Earth Doping: Experimental and First-Principles Studies. (2015). The Journal of Physical Chemistry C 119 (25), 14351-14357, 2015, 119, 14351–14357.

On the optical properties and electronic charge transfer of an anticancer agent: ferrocene-substituted dithio-o-carborane conjugate

Journal Article ,
On the optical properties and electronic charge transfer of an anticancer agent: ferrocene-substituted dithio-o-carborane conjugate. (2015). Biointerface Research Applied Chemistry 5 (2), 941-944, 2015, 5, 941–944.

Tuning magnetic properties of BiFeO3 thin films by controlling rare-earth doping: experimental and first-principles studies

Journal Article ,
Tuning magnetic properties of BiFeO3 thin films by controlling rare-earth doping: experimental and first-principles studies. (2015). The Journal of Physical Chemistry C, 119, 14351–14357.

On the optical properties and electronic charge transfer of an anticancer agent: ferrocene-substituted dithio-o-carborane conjugate

Journal Article ,
On the optical properties and electronic charge transfer of an anticancer agent: ferrocene-substituted dithio-o-carborane conjugate. (2015). Biointerface Research Applied Chemistry, 5, 941–944.

Enhanced electrical model for dye-sensitized solar cell characterization

Journal Article ,
Enhanced electrical model for dye-sensitized solar cell characterization. (2015). Solar Energy 122, 700-711, 2015, 122, 700–711.

Enhanced electrical model for dye-sensitized solar cell characterization

Journal Article ,
Enhanced electrical model for dye-sensitized solar cell characterization. (2015). Solar Energy, 122, 700–711.

Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba4Ga4SnSe12: For photovoltaic applications

Journal Article ,
Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba4Ga4SnSe12: For photovoltaic applications. (2015). Journal of Solid State Chemistry 229, 260-265, 2015, 229, 260–265.

A novel approach for the synthesis of tin antimony sulphide thin films for photovoltaic application

Journal Article ,
A novel approach for the synthesis of tin antimony sulphide thin films for photovoltaic application. (2015). Solar Energy 113, 25-33, 2015, 113, 25–33.

Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba4Ga4SnSe12: For photovoltaic applications

Journal Article ,
Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba4Ga4SnSe12: For photovoltaic applications. (2015). Journal of Solid State Chemistry, 229, 260–265.

A novel approach for the synthesis of tin antimony sulphide thin films for photovoltaic application

Journal Article ,
A novel approach for the synthesis of tin antimony sulphide thin films for photovoltaic application. (2015). Solar Energy, 113, 25–33.

Modified Becke–Johnson (mBJ) exchange potential investigations of the optoelectronic structure of the quaternary diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4

Journal Article ,
Modified Becke–Johnson (mBJ) exchange potential investigations of the optoelectronic structure of the quaternary diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4. (2015). Materials Science in Semiconductor Processing 39, 606-613, 2015, 39, 606–613.

Modified Becke–Johnson (mBJ) exchange potential investigations of the optoelectronic structure of the quaternary diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4

Journal Article ,
Modified Becke–Johnson (mBJ) exchange potential investigations of the optoelectronic structure of the quaternary diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4. (2015). Materials Science in Semiconductor Processing, 39, 606–613.

First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications

Journal Article ,
First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications. (2015). Journal of Molecular Modeling 21 (2), 1-7, 2015, 21, 27.

Exploring the electronic structure and optical properties of new inorganic luminescent materials Ba (Si, Al) 5 (O, N) 8 compounds for light-emitting diodes devices

Journal Article ,
Exploring the electronic structure and optical properties of new inorganic luminescent materials Ba (Si, Al) 5 (O, N) 8 compounds for light-emitting diodes devices. (2015). Current Applied Physics 15 (10), 1160-1167, 2015, 15, 1160–1167.

Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba {sub 4} Ga {sub 4} SnSe {sub 12}: For photovoltaic applications

Journal Article ,
Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba {sub 4} Ga {sub 4} SnSe {sub 12}: For photovoltaic applications. (2015). Journal of Solid State Chemistry 229, 2015.

First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications

Journal Article ,
First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications. (2015). Journal of Molecular Modeling, 21, 27.

Exploring the electronic structure and optical properties of new inorganic luminescent materials Ba (Si, Al) 5 (O, N) 8 compounds for light-emitting diodes devices

Journal Article ,
Exploring the electronic structure and optical properties of new inorganic luminescent materials Ba (Si, Al) 5 (O, N) 8 compounds for light-emitting diodes devices. (2015). Current Applied Physics, 15, 1160–1167.

Exploring the electronic structure and optical properties of new inorganic luminescent materials Ba (Si, Al) 5 (O, N) 8 compounds for lightemitting diodes devices

Journal Article ,
Exploring the electronic structure and optical properties of new inorganic luminescent materials Ba (Si, Al) 5 (O, N) 8 compounds for lightemitting diodes devices. (2015). Current Applied Physics 15 (10), 1160-1167, 2015.

Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: an experimental and first-principles study

Journal Article ,
Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: an experimental and first-principles study. (2015). RSC Advances 5 (42), 33233-33238, 2015, 5, 33233–33238.

DFT and modified Becke Johnson (mBJ) potential investigations of the optoelectronic properties of SnGa4Q7 (Q= S, Se) compounds: transparent materials for large energy conversion

Journal Article ,
DFT and modified Becke Johnson (mBJ) potential investigations of the optoelectronic properties of SnGa4Q7 (Q= S, Se) compounds: transparent materials for large energy conversion. (2015). Solid State Sciences 48, 244-250, 2015, 48, 244–250.

Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: an experimental and first-principles study

Journal Article ,
Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: an experimental and first-principles study. (2015). RSC Advances, 5, 33233–33238.

DFT and modified Becke Johnson (mBJ) potential investigations of the optoelectronic properties of SnGa4Q7 (Q= S, Se) compounds: Transparent materials for large energy conversion

Journal Article ,
DFT and modified Becke Johnson (mBJ) potential investigations of the optoelectronic properties of SnGa4Q7 (Q= S, Se) compounds: Transparent materials for large energy conversion. (2015). Solid State Sciences, 48, 244–250.

Stability and morphology-dependence of Sc3+ ions incorporation and substitution kinetics within ZnO host lattice

Journal Article ,
Stability and morphology-dependence of Sc3+ ions incorporation and substitution kinetics within ZnO host lattice. (2015). Materials Science in Semiconductor Processing 39, 103-111, 2015, 39, 103–111.

Coulomb interaction and spin-orbit coupling calculations of thermoelectric properties of the quaternary chalcogenides Tl2PbXY4 (X= Zr, Hf and Y= S, Se)

Journal Article ,
Coulomb interaction and spin-orbit coupling calculations of thermoelectric properties of the quaternary chalcogenides Tl2PbXY4 (X= Zr, Hf and Y= S, Se). (2015). Semiconductor Science and Technology 30 (10), 105018, 2015, 30, 105018.

Stability and morphology-dependence of Sc3+ ions incorporation and substitution kinetics within ZnO host lattice

Journal Article ,
Stability and morphology-dependence of Sc3+ ions incorporation and substitution kinetics within ZnO host lattice. (2015). Materials Science in Semiconductor Processing, 39, 103–111.

Coulomb interaction and spin-orbit coupling calculations of thermoelectric properties of the quaternary chalcogenides Tl2PbXY4 (X= Zr, Hf and Y= S, Se)

Journal Article ,
Coulomb interaction and spin-orbit coupling calculations of thermoelectric properties of the quaternary chalcogenides Tl2PbXY4 (X= Zr, Hf and Y= S, Se). (2015). Semiconductor Science and Technology, 30, 105018.

Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A= K, Rb)

Journal Article ,
Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs2 (A= K, Rb). (2015). Materials Research Bulletin 70, 847-855, 2015, 70, 847–855.

Study of wurtzite and zincblende GaN/InN based solar cells alloys: First-principles investigation within the improved modified Becke–Johnson potential

Journal Article ,
Study of wurtzite and zincblende GaN/InN based solar cells alloys: First-principles investigation within the improved modified Becke–Johnson potential. (2014). Solar Energy 107, 543-552, 2014, 107, 543–552.

Study of wurtzite and zincblende GaN/InN based solar cells alloys: First-principles investigation within the improved modified Becke–Johnson potential

Journal Article ,
Study of wurtzite and zincblende GaN/InN based solar cells alloys: First-principles investigation within the improved modified Becke–Johnson potential. (2014). Solar Energy, 107, 543–552.

Mutual alloying of XAs (X= Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications

Journal Article ,
Mutual alloying of XAs (X= Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications. (2014). Solar Energy 100, 1-8, 2014, 100, 1–8.

DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications

Journal Article ,
DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications. (2014). Solar Energy Materials and Solar Cells 130, 6-14, 2014, 130, 6–14.

Mutual alloying of XAs (X= Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications

Journal Article ,
Mutual alloying of XAs (X= Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications. (2014). Solar Energy, 100, 1–8.

Presentations

Add
No Presentation added

Calendar

Add
No Event Found

Announcements

Add
No Announcement Found

Classes

Add

PHU 101 - Astronomy

This course serves as a science elective to help students fulfill part of their science requirements. It consists of an introduction to astronomy from a predominantly descriptive perspective; quantitative parts will be included whenever conducive throughout the semester. The level of mathematics required form the student is pre-calculus; without it, the student will not be able to follow the quantitative parts of the course. The topics to be covered will include the night sky, telescopes, the solar system and its formation theories, the life cycle of stars, galaxies and the general structure of the universe, and an introduction to cosmology.

EE 209: Applied Electromagnetics

The course presents the principles of electromagnetic (EM) fields and their propagation, power and energy content, and properties in guided and unguided structures. The course begins by review of work and fields, complex numbers and phasors. The course aims to build a bridge between circuit theory and the EM material through the detailed treatment transmission lines. The course then covers vector analysis and orthogonal coordinate systems, and introduces Maxwell’s equations for the general case of time-varying fields. Properties of electrostatic and magnetostatic fields and laws, and electric and magnetic boundary conditions are then studies in details

MNT511 :Renewable Energy Storage Systems

Students will be exposed to a broad brush of topics related to energy and environment with a focus on a societal problem of great current concern—namely, the use of energy and the local, regional, and global environmental effects that use engenders. Students will become familiar with the modern technology being used to ameliorate these adverse environmental effects. It enables the student to integrate this understanding into an appreciation of both the technology and science that must be employed by nations to maintain a livable environment while providing improved economic circumstances for their populations. In our life of every day, we see these forms. For examples a rechargeable battery stores readily convertible chemical energy to operate a mobile phone. Even food(which is made by the same process as fossil fuels) is a form of energy stored in chemical form.Energy storage is a dominant factor in economic development of our country and life. The main target of the present course is to assess and understand the process behind the most important (and well known) forms of storing energy. We will focus on solar cells as devices for storing solar energy in order to understand their functioning mode for photovoltaic applications.

MNT 512

This is introductory course in polymer in energy, environment and biomedical studies will focus on polymeric manufacturing procedures, characterization, and applications. It will include different types of synthetic techniques that are commonly used in modifying the polymer matrix composites.

MNT 510

 

This course focuses on the fundamentals of Nanoscience and Nanotechnology such as the basic properties of nanoparticles, structural control of nanoparticles and environmental and safety issues with nanoparticles.  In addition, this will introduce the students to the synthesis and characterization of nanomaterial for possible applications in Nanotechnology.   

Moreover, this course will also focus on the current and future nanotechnology applications in engineering, materials, physics, chemistry, biology, electronics, and energy

LSR 421

LSR 421 and consecutive LSR 422 courses represent a two-semester-term individually guided investigation project involving laboratory work and/or computational investigation in specific aspects of experimental and theoretical biomedical sciences. The background, results and conclusions of the study are reported in the form of an oral presentation in the second half of spring semester and a thesis, submitted at the end of the course, which includes a review of relevant literature, data presentation and analysis and discussion. Course subject and materials are individually designed for each enrolled student by supervisor. This course develops transferable skills, associated with laboratory-based experimental project work in Biomedical Sciences.

PHU 205

This course is the first of a two-semester sequence that introduces the basic concepts of algebra-based physics. It deals in essence with classical mechanics. The topics covered include particle kinematics and dynamics; conservation of energy and linear momentum; rotational kinematics and angular momentum; fluids; simple harmonic motion and waves

PHU 103

This course is about the nature of motion, and the constituents of matter. The motion of a ball in the air, a car on the street, and the Moon in the sky seem familiar to all. However, many of the ways we initially think about these motions do not lend themselves to quantitative analysis, nor do they allow us to think about all these phenomena in a unified way. If one retrains one’s thinking to a disciplined approach in terms of position, velocity, acceleration, and force, all motion, from the smallest molecule to the largest galactic cluster, may be seen to share a common description. One may apply this understanding to such disparate topics as the flow of blood in veins, bridge design, the banking of race car tracks, and the air conditioning of an Alfaisal University classroom on a hot summer day. These phenomena are the stuff of everyday life, they are of great value throughout science and technology, and mastering these concepts is great fun!